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ABSTRACT

System monitoring has recently emerged as an effective way to

analyze and counter advanced cyber attacks. The monitoring data

records a series of system events and provides a global view of

system behaviors in an organization. Querying such data to iden-

tify potential system risks and malicious behaviors helps security

analysts detect and analyze abnormal system behaviors caused by

attacks. However, since the data volume is huge, queries could easily

run for a long time, making it difficult for system experts to obtain

prompt and continuous feedback. To support interactive querying

over system monitoring data, we propose ProbeQ, a system that

progressively processes system-behavioral queries. It allows users

to concisely compose queries that describe system behaviors and

specify an update frequency to obtain partial results progressively.

The query engine of ProbeQ is built based on a framework that

partitions ProbeQ queries into sub-queries for parallel execution

and retrieves partial results periodically based on the specified up-

date frequency. We concretize the framework with three partition

strategies that predict the workloads for sub-queries, where the

adaptive workload partition strategy (AdWd) dynamically adjusts

the predicted workloads for subsequent sub-queries based on the

latest execution information. We evaluate the prototype system

of ProbeQ on commonly used queries for suspicious behaviors

over real-world system monitoring data, and the results show that

the ProbeQ system can provide partial updates progressively (on

average 9.1% deviation from the update frequencies) with only 1.2%

execution overhead compared to the execution without progressive

processing.
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1 INTRODUCTION

Modern computer systems are fairly complex due to the numerous

installed software programs. Existing application logs (e.g., web

logs and firewall logs) provide only a partial view of certain system

behaviors [36, 54], and thus are insufficient for analyzing advanced

cyber attacks, such as advanced persistent threats (APT) [18]. This

motivates the recent trend of leveraging system monitoring logs

for security analytics to find possible anomalies. Such monitoring

data records system-level interactions among software programs

and system resources (e.g., processes, files, network sockets) as a

sequence of events over time [5, 7, 12]. A typical event may indicate

that at timestamp t1, a process originated from a system/software

program listens to a specific port or another process reads the data

from a specific file.

As system monitoring data provides a global view of system

behaviors over time, querying such data for suspicious system

behaviors provides valuable information for the detection of system

anomalies. For example, system experts may want to know whether

certain risky system behaviors, such as malware infection and

program crashes, occur at what time range. The knowledge about

these risky system behaviors can be either from publicly available

knowledge bases [4, 8, 11, 13, 17], or from specific definitions of

suspicious behaviors in an organization.

To investigate these interesting system behaviors, system experts

often perform interactive querying, where they iteratively write

queries, acquire quick feedback (usually within a minute) and refine

the queries, etc. However, system monitoring produces a huge

amount of daily data [33] (over 50GB for an organization consisting

of 100 computers), and various analyses require queries over data

collected for a long period of time. For example, malicious behaviors

involved in APT attacks may require several months to one year

worth of data for investigation. Due to the large amount of data,

the execution of a query over such data could easily last for more

than 10 minutes, making interactive querying difficult to realize.



To support effective and efficient interactive querying of sys-

tem monitoring data, we propose ProbeQ, a domain-specific query

system that progressively processes system-behavioral queries. It

allows users to specify queries of system behaviors over system

monitoring data. ProbeQ is designed with three goals: (1) query

syntax is designed to intuitively and concisely specify interesting

system behaviors; (2) query execution is optimized for searching

system monitoring data; (3) progressive processing is employed to

report partial results progressively rather than at the end of the

whole search. Query 1 is an example query for finding whether any

program writes to system log files, which may indicate an attacker

clears her traces after the attack:

1 host = 1 // host id

2 (from "02/01/2019" to "02/07/2019") // time window

3 // event pattern

4 proc p1 write file f1['/var/log/wtmp'||'/var/log/lastlog ']

5 return distinct p1 , f1 // result projection

6 update 5s // progressive update frequency

Query 1: ProbeQ query for a suspicious behavior

Query Language. ProbeQ adopts the syntax format {subject-

operation-object} to specify event patterns for system behaviors,

where system programs are represented as subjects, system re-

sources are represented as objects, and interactions are represented

as operations initiated by subjects and targeting on objects. As

shown in Query 1, ProbeQ’s syntax models system behaviors di-

rectly and is user-friendly. Moreover, the clause update 5s indicates

that the query employs progressive processing and aims to return

the results every five seconds. Such features are helpful in sup-

porting interactive querying, since system experts could receive

quicker feedback from the results and may stop the search if they

have found the target behaviors or they want to refine the query.

Parallel Query Execution. The query engine of ProbeQ opti-

mizes the search based on the domain-specific characteristics of

system monitoring data. In system monitoring data, each event is

generated with a timestamp at a specific host in the organization.

Thus, these events exhibit strong spatial and temporal properties:

events in different hosts are independent and events in the same

host are independent along the time. Based on such spatial and

temporal properties of the data, we propose two types of parallel

strategies that partition a query into sub-queries by uniformly split-

ting the time window or the total workload. The query engine then

executes these sub-queries in parallel.

Progressive Processing. Even with parallel executions, the per-

formance speed-up (> 50%) is bounded by the hardware limitations

(e.g., CPU and disk I/O), and executing a query that searches a

week’s data (about 250GB) may still take more than 10 minutes

in a server. To enable quicker and continuous feedback, ProbeQ

employs the technique of progressive processing to report partial

query results based on a specified update frequency. System ex-

perts typically have different expectations of update frequencies

for different queries. For example, some queries that look for the

existence of a behavior may require a shorter update frequency

(e.g., once every two seconds); other queries that look for what

exact files a specific program writes may require a longer update

frequency to collect more results for analysis.

The key quality of our progressive query processing is measured

by two metrics: (1) Q.1 Responsiveness: it should report new results

in every update cycle and (2) Q.2 Overhead: its overhead should

be as low as possible. Clearly, if we do not conduct any query par-

titioning, we cannot receive any update until the end, failing Q.1.

At another extreme, if we obtain very frequent updates, the over-

head becomes unacceptably high, failing Q.2. For example, given a

query with a one-day time window, if we spawn a sub-query for

each second of the time window, i.e., 3600*24 sub-queries in total,

we can easily meet Q.1. However, such extreme strategy brings

a significant overhead due to various costs such as establishing

connections to databases and parsing the sub-queries, causing a

query to take more than 28 hours to finish (originally 270 seconds,

about 350 times slower). Given an update frequencyUf (e.g., 10 sec-

onds), an ideal partition is to assign a certain amount of workloads

to the sub-queries such that each sub-query takes exactUf time to

finish, incurring the lowest overhead possible while satisfying Q.1.

In practice, it is almost impossible to achieve such ideal partitioning

due to the complex nature of computer systems, but a suboptimal

solution is still possible: making the average execution time of the

sub-queries close to Uf .

Based on these insights, we first propose two partition strategies

(Fixed Time Window (FixTW) and Fixed Workload (FixWd)) that

predict the workload for sub-queries based on the measured event

processing rate (i.e., # events processed per second) and the given

update frequency. As suggested by their names, FixTW computes

a time window based on the predicted workload and uses the time

window to partition the query, while FixWd ensures that each sub-

query has the same workload as the predicted workload. However,

we observed that databases typically employ cache mechanism to

load a chunk of data from disk, and the data stored for a host for a

certain period of time is often loaded together. With the loaded data

in the cache, some sub-queries partitioned by these two strategies

finish execution much faster. Thus, the inaccurate prediction of

workload causes the average execution time of sub-queries to be

significantly larger than the update frequency, failing Q.1.

Based on these observations, we propose an Adaptive Workload

Partition Strategy (AdWd), which dynamically predicts the work-

loads for subsequent sub-queries based on the latest execution

information of already-finished sub-queries. The key insight of

AdWd is to leverage online learning technique, such as gradient

descent [42, 43, 45], for adjusting the event processing rates based

on dynamic execution information.

Evaluations.We have built a prototype system of ProbeQ based

upon auditd [12] and ETW [7], and deployed it in an anonymous

enterprise comprising around 100 hosts. To evaluate the effective-

ness of the ProbeQ system, we conduct comprehensive evaluations

on real-world suspicious behaviors over five-day data (about 230GB

stored in PostgreSQL databases [14]). The evaluations are conducted

on a server with an Intel(R) Xeon(R) CPU E5-2660 (2.20GHz), 64GB

of RAM, and a RAID that supports four concurrent reads/writes.

The results show that AdWd is able to progressively provide the

partial results (on average 9.1% deviation from the update frequen-

cies) and is 32.8% faster than the corresponding SQL queries. The

overhead of progresseive processing is only 1.2% compared to no

progressive processing for the execution of same queries.

We also compare AdWdwith FixWd and FixTW, and the results

show that AdWd outperforms FixWd and FixTW on the deviations



of sub-query execution time from the update frequencies (6.3% vs.

119% and 148%) and the percentage in getting new results at every

update cycle i.e., Q.1 responsiveness (84.5% vs. 71.5% and 62.7%).

In terms of Q.2 overheads on the total execution time without pro-

gressive processing, AdWd (9.5%) has a comparable performance

to FixWd (6.4%) and FixTW (5.9%) when the update frequency is

greater than 2s.

We summarize our major contributions as follows:

• A domain specific language in ProbeQ that allows system

experts to concisely specify interesting system behaviors and

update frequencies to obtain partial results progressively.

• A study on different parallel strategies for partitioning a

ProbeQ query into sub-queries for parallel execution.

• A framework of progressive processing that partitions a

ProbeQ query into sub-queries and reports partial results

based on a specified update frequency. We propose a mea-

surement process to model event processing rates for the

query and propose three partitioning strategies (FixTW,

FixWd, and AdWd) that predict workloads for sub-queries

based on the event processing rate.

• Comprehensive evaluations on the ProbeQ queries for real-

world suspicious behaviors and comparisons among FixTW,

FixWd, and AdWd.

2 SYSTEM MONITORING DATA

System monitoring data records the interactions among system

programs and system resources as events. Each of the recorded

interactions represents a system event that occurs at a particular

host. It consists of the initiator, the type, and the target of the inter-

action. Initiators are processes originated from software programs

such as firefox, while targets are system resources, such as files,

processes and network connections on Windows, Linux/Unix or

Mac OS. Besides, each interaction is associated with a timestamp,

indicating when the interaction occurs.

Based on above data characteristics, system monitoring data

can be represented as a temporal graph, with system entities as

heterogeneous nodes and system events as edges with timestamps

(i.e., pointing from the initiator node to the target node). Figure 1

gives an example of modeling systemmonitoring data as a temporal

graph. In Figure 1, we have nine events annotated with the times-

tamps t1śt9. We have shown three major types of system entities:

files (F1śF5), processes (P1śP2), and network connections (I1śI2).

Each edge points from the initiator (subject) to the target (object).

This indicates that the initiator performs a certain operation on the

target. For example, at timestamp t1, the initiator process P1 opens

the target network connection I1 to send or receive some data, as

indicated by the type of the interaction łopenž. By modeling system

monitoring data as temporal graphs, we can easily understand the

temporal event nature of the data and observe the system behaviors

in terms of their interactions with system resources.

Data Collection and Storage. To collect such data, we imple-

ment data collection agents for Windows and Linux based on ETW

event tracing [7] and Linux Audit Framework [12]. Our current

agents monitor system audit events about the system calls that are

crucial in security analysis. The monitored system calls are mapped

to three major types of events: (1) process creation and termination,

I1

P1

t1

F1

F2

t2

t3

P2
t4

I2

F3

F4

t5

t6

t7t8t9

t1: Process P1 opens IP Channel I1
t2: P1 reads data from File F1
t3: P1 writes data to File F2

t8: Process P2 writes data to File F5
t9: P2 writes data to IP Channel I2

Temporal

Graph

F5

…

Figure 1: System monitoring data as a temporal graph

Table 1: Representative grammar of ProbeQ

<probeq> ::= (<evt_cstr>)* <query>

<evt_cstr> ::= <cstr>| ‘(’ <time_window>‘)’

<query> ::= <evt_patt>+ <return><progress>? <t_num>?

<evt_patt> ::= <entity><op_exp><entity><evt>?

<entity> ::= <type><entity_id>? (‘[’ <attr_cstr>‘]’)?

<attr_cstr> ::= <cstr>

| <attr_cstr>(‘,’ | ‘||’) <attr_cstr>

| ‘(’ <attr_cstr>‘)’

<cstr> ::= <attr_name><bop><val>

| ‘!’? <val>

| <attr_name>‘not’? ‘in’ <val_set>

| <attr_name>‘not’? ‘in’ <query_id>

<val_set> ::= ‘(’ <val>(‘,’ <val>)* ‘)’

<op_exp> ::= ‘!’? <op>

| <op_exp>(‘,’ | ‘||’) <op_exp>

| ‘(’ <op_exp>‘)’

<evt> ::= ‘as’ <evt_id>(‘[’ <attr_cstr>‘]’)?

<return> ::= ‘return’ ‘distinct’? <res>(‘, ’ <res>)*

<res> ::= <entity_id>(‘.’<attr_name>)?

<progress> ::= ‘update’ <val><timeunit>

<t_num> ::= ‘using’ <val>‘worker’

(2) file accesses, and (3) network accesses. The collected data is then

sent to a central server, where the data will be modeled and stored

into databases. At this server side, a global clock is used to correct

the time drifting of the events collected at different agents.

We store the collected data in relational databases powered by

PostgreSQL [14]. Relational databases come with mature indexing

mechanisms and are scalable to the massive systemmonitoring data.

When storing data, we partition the data based on its temporal and

spatial properties: separating groups of hosts into table partitions

and dumping one database per day for the data collected on that day.

Besides, we apply data deduplication by storing subjects and objects

in entity tables and events in relationship tables. To query an event,

users need to join three tables: subject table, object table and event

table. We build various types of indices on the attributes that will be

queried frequently, such as the executable name of process, the file

name, and the source/destination address of network connection.

3 PROBEQ DESIGN

Existing popular query languages (e.g., SQL) fail to intuitively and

concisely specify interesting system behaviors on one or more hosts

within a certain time window. To address this challenge, we design

a new grammar in ProbeQ. Table 1 shows the representative set of

the grammar rules of ProbeQ.



3.1 Data Schema Definition

ProbeQ works for domains where the data can be modeled as

entities and events with temporal information, such as enterprise-

wide system monitoring data, sensor-based Internet-of-Thing (IoT)

data, and performance monitoring information of data centers.

Similar to the Data Definition Language in SQL [16], given a type

of domain data, ProbeQ allows user-defined schema for specifying

the entities, events, and their attributes for the domain data. In this

work, we mainly focus on querying over system monitoring data.

3.2 ProbeQ Query

ProbeQ enables users to intuitively specify event patterns for de-

scribing interested system behaviors w.r.t. the interactions with sys-

tem resources. A ProbeQ query consists of two major parts: event

constraints (< evt_cstr >) that specifies the constraints for hosts

and time window, and an event pattern (< evt_patt >) that speci-

fies subject/object, event operation, and an optional event ID. Both

subjects and objects can have optional attributes (< attr_cstr >).

In a ProbeQ query, the subject and object are specified as entities

(< entity >), which consist of entity type (file, process, network

connection), optional entity ID, and optional attributes. In Query 1,

proc p specifies a process entity p, and file f1['/var/log/wtmp' || '/var/

log/lastlog']] specifies a file entity f 1. The operation (< op_exp >)

specifies the operation initiated by the subject and targeting at the

object, such as reading a file. Logical operators (ł,ž for AND, ł| |ž for

OR, ł!ž for NOT) can be used to combine multiple operations. The

event return (< return >) specifies which attributes of the found

events to return. Based on the events’ attributes specified in the

event return rule, we output the result tuples.

Progressive Processing. The progressive processing clause

(<progress>) specifies the update frequency for the progressive

processing, and the thread number (< t_num >) specifies the num-

ber of worker threads used to execute the subqueries. If the update

frequency is not specified, the query execution will not report the

results until the end of the search, and fully leverage the spatial

and temporal properties of the system monitoring data to optimize

the overall execution time. If the thread number is not specified,

the optimal number is inferred based on the number of events to

be search over. The details of how the optimal number of threads

is inferred is described in Section 4.

3.3 Example

Query 1 and Query 2 give two suspicious behaviors expressed in

ProbeQ. Query 1 aims to find whether any software program mod-

ifies system logs at the host with host = 1 from 02/01/2019 to 02/07/2019.

Query 2 aims to find whether any software program reads a set

of history files (e.g., .viminfo and .bash_history) concatenated by the

OR operator (||), indicating a risky behavior that probes the user

history.

1 proc p read file f['.lesshst ' || '.viminfo ' || '.bash_history ' ||

'.pgadmin_histoqueries '] as evt

2 return distinct p, f, evt.starttime

Query 2: Command history probing

1 2 3 
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Figure 2: Four different types of parallel strategies

4 PARALLEL QUERY EXECUTION

By leveraging the spatial and temporal properties of system moni-

toring data (independent in both dimensions), we propose four

parallel strategies that partition a query into sub-queries with

smaller time windows and fewer involved hosts, and execute the

sub-queries in parallel to optimize the query execution. We next

present the parallel strategies in detail.

Uniform Time Window vs. Uniform Workload: As events in

system monitoring data are independent over time, a straightfor-

ward partition is to uniformly split the time window for all sub-

queries (referred to as uniform time-window partition (UniTW)).

Figure 2a shows an example of UniTW, which partitions a query

searching one-day data of three hosts into three sub-queries (i.e.,

each sub-query has a timewindow of eight hours). However,UniTW

usually does not split the workload fairly for each sub-query. In

practice, a host usually produces events at a different rate during

different times of a day. For example, a developer machine produces

much more monitoring events during the day than the night.

Based on this observation, we propose another type of parallel

strategy, uniform workload partition, which balances the workload

(i.e., # events to process) for sub-queries. To uniformly partition

the workload of a query, we first need to know the total workload

the query will process. We collect the statistics of the number of

events received every minute for each host, and then predict the

workload based on the query’s time window and involved hosts.

With the predicted workload of the query, we next describe two

different strategies that achieve uniform workload partition.

Parallel (ParaWd) vs. Sequential (SeqWd): The first uniform

workload strategy, called parallel workload partition (ParaWd), is

to partition the time window into smaller time windows, so that in

each time window, the number of events for all the involved hosts

are the same (i.e., the workloads are equal for each sub-query),

as shown in Figure 2b. The second uniform workload strategy,

called sequential workload partition (SeqWd), is to first sequentially

concatenate the events of all the hosts as an array of events, and

then divide the array uniformly for each sub-query, as shown in

Figure 2c.

Initialization Cost: In theory, both of these strategies uniformly

partition the workload of a query. However, when we applied the

strategies, we found that neither of these strategies lead to the

same execution time among all sub-queries. The reason is that

there is an initialization cost (e.g., loading indexes) when the query

accesses the data of a host for the first time. The subsequent accesses

benefit from the cache mechanism and thus have no such cost (or

at least the cost is negligible). Hence, we propose the third uniform

workload strategy, called sequential workload with initialization

cost partition (SeqWdInit). As shown in Figure 2d, this strategy

takes into account the initialization cost for the first access to each
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Figure 3: Comparison of different parallel strategies

host’s data. It converts the initialization time on each host to a

virtual workload (i.e., the initialization time multiplied by the event

processing rate), inserts the virtual workloads (shown in red border)

to the workloads of each host, and then applies SeqWd to partition

the combined workload.

Comparison of Parallel Strategies: We conducted a measure-

ment study of these parallel strategies on two sets of typical queries

that span one day and multiple days. The first set of queries search

events from a single host, and the second set of queries search

events from multiple hosts, each of which belongs to a different

partition table (i.e., different groups). Each query was executed for

three times and the average execution time was computed as the

final result. To execute the sub-queries in parallel, we used a worker

thread to execute each sub-query.

Figure 3a shows the results of one query (all others have similar

results). Among all parallel strategies, SeqWdInit achieves the

best performance, while UniTW performs the worst. The reason

is that the events generated on the host shown in Figure 3 are

non-uniformly distributed (e.g., higher throughput in the daytime

than at night). Thus, the partitioned sub-queries have different

workloads, causing some sub-queries to take much longer execution

time than the others. But UniTW has a comparable performance to

that of ParaWd for the query that searches the events from three

hosts (shown in Figure 3b), since these hosts have a constant event

generation rate for the whole day and sub-queries partitioned by

UniTW have similar workloads.

Among four strategies, SeqWd and SeqWdInit perform better

than ParaWd. The reason is that each sub-query partitioned by

SeqWd and SeqWdInit usually involve events from one or two

hosts, while the sub-queries partitioned by ParaWd involves all

hosts. As events belong to different hosts are stored in different

partition tables, accessing events from multiple partition tables is

slower than accessing the same amount of events from one partition

table. Moreover, since the initialization cost is not negligible (as

shown in Figure 4c), the consideration of this cost further improves

the performance as indicated by the performance of SeqWdInit.

Performance Improvement w.r.t. Degree of Parallelism: In

general, parallelism improves the query execution time for all par-

allel strategies. In Figure 3, when the number of worker threads

is less than five, the performance improvement by increasing the

number of worker threads is more significant (at least 10% by as-

signing one more worker thread). However, running with over four

threads does not contribute to notable improvements (i.e., flat tail

lines). The reason is that our server has a RAID that supports four

concurrent read/write operations, and four worker threads in the-

ory can already make full use of system resources. When there are

more than four worker threads, some threads are accessing some

resources while the others are waiting for these resources to be

released. In this case, increasing the number of worker threads does

not introduce significant improvements.

These results also show that even though the performance im-

provements brought by parallelism is about 50%, queries could

still run for over 200 seconds. This further motivates us to employ

progressive processing to assist interactive querying.

5 MODELING EVENT PROCESSING RATES
AND INITIALIZATION TIME

To devise strategies for progressive processing, we first conduct

a measurement study of event processing rates and initialization

time for the queries that are commonly used to search risky sys-

tem behaviors, such as Query 1. Unlike general database queries

(e.g., SQL queries) that may query different tables for different pur-

poses, in the domain of system monitoring data, behaviorial queries

typically search system behaviors w.r.t. system resources like files

(described in Section 2), and thus we mainly measure the queries

on searching the events rather than other queries that compute

statistics or relationships. The study is conducted on the real-world

data stored in PostgreSQL databases. We vary the workloads to

uncover the relationship between the query execution time and the

workload (i.e., event processing rates).

Result Analysis: Figure 4a shows the relationship between the

query execution time and the workload for queries that search

behaviors at seven different hosts. As we can see, as the workload

increases, the execution time increases linearly. We apply linear

regression (commonly used for modeling and predicting system

behaviors [27, 34, 49, 52]) on the execution results, and the R2 and

p-values of fitted lines range from 0.977 to 0.999, and 2.22E-014 to

1.73E-006, respectively, indicating a strong linear relationship. Such

measurement results are as expected: with the indexes built for the

host and timestamp columns of event tables, searching the desired

events is to scan the index entries and fetch the matched events,

and thus the query execution time is linearly correlated with the

number of scanned events.

Impact of Host Event Sizes and Partition Table Sizes:We no-

tice that the event processing rates vary for the events at different

hosts. In Figure 4a, the event size for a host decreases from host 1

to host 7. As the event size increases, both the event processing rate

(i.e., line slope) and the initialization time (i.e., line intercept) also

increases. To understand how host event sizes impact event process-

ing rates and initialization time, we further conduct experiments

on the queries searching events at different hosts.

Instead of the linear relationship, both the event processing rate

(shown in Figure 4b) and the initialization time (shown in Figure 4c)

have strong logarithmic relationships [24, 28, 41, 50, 53] with the

total event sizes of all hosts stored in the same partition table. We

further measure the event processing rates on the hosts in three

partition tables (shown in Table 2), and obtain the same conclusion.

The potential reason is that the temporal information of events is
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Figure 4: Investigation on relationships about event processing rate ip, initialization time it , and event size

indexed using a tree index, and the complexity of traversing the

tree index to fetch events is loд(#event ). We also observe that for

the hosts with similar event sizes but in different table partitions,

their event processing rates and initialization time are different (not

shown here due to space limits).

Model Measurement and Prediction: Based on the measure-

ment study, we model event processing rates and initialization time

as linear functions for each host, and use these models to predict

the workload based on a given update frequency. To derive the

linear function for a host h, we partition a query that searches

one-day events on h into ten sub-queries. These sub-queries form

an arithmetic progression with common difference of 1
10 of the

total workload. We then run sub-queries in sequence, and apply the

linear regression on the execution time and workloads to obtain

the linear function. We clear caches before each query execution to

minimize the background noise.

However, such measurement process is relatively expensive, es-

pecially when the number of hosts is large. To address this problem,

we propose a prediction technique based on the observed relation-

ships from the measurement results. We choose the host with the

largest event size out of all table partitions as the base host, and use

its measured model to predict the models of others. We choose such

host since the events belonging to the hosts with a small number of

events are typically not stored sequentially and their event process-

ing rates are not representative in reflecting the performance of

most queries. Formally, given a host hm that has the largest event

size, it has the event processing rate epmax and belongs to the table

partitionpm that has in totaln hosts. Then for a hosthi that belongs

to a partition table pk with t hosts, hi ’s event processing rate ep is

computed as follows:

ep = epmax ∗
ln(ei,k ) ∗ ln(

∑t
j=1 ej,k )

ln(em,m ) ∗ ln(
∑n
r=1 er,m )

, where eu,v represents the number of events on the host hu at the

table partition pv . The initialization time it is computed using the

same formula. With the prediction, we only need to run queries for

measuring one host, which makes our techniques shown in later

sections much more scalable and practical.

Table 2: Statistics of Logarithmic Regression

Table ID
Event processing rate Initialization time
R-squared p-value R-squared p-value

1 0.956 7.37E-4 0.95 9.39E-4
2 0.97 3.37E-4 0.918 2.61E-3
3 0.916 2.73E-3 0.963 5.08E-4
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Figure 5: Framework of progressive processing

6 PROGRESSIVE PROCESSING OF PROBEQ

QUERY

In this section, we first present the framework of progressive pro-

cessing, explaining how a ProbeQ query is partitioned into sub-

queries and how to schedule these sub-queries to achieve progres-

sive processing. We then present three different partition strategies

that can be plugged into the framework for spawning sub-queries.

6.1 Framework of Progressive Processing

Figure 5 shows ProbeQ’s framework of progressive processing. The

framework maintains a result queue for each ProbeQ query, and

probes the queue iteratively based on the specified update frequency

to retrieve the latest search results. In order to obtain partial search

results for a ProbeQ query, the query is partitioned into a set of sub-

queries with smaller time window and/or fewer involved hosts, and

these sub-queries are executed in parallel (e.g., via worker threads).

Depending on the hardware configurations, different numbers of

worker threads can be employed to execute the sub-queries. Once

a sub-query finishes the execution, its search results are inserted

into the query’s result queue, and the corresponding worker thread

is assigned a new sub-query if any. The newly inserted results will

be retrieved in the next probing cycle as latest results.

This framework can be concretized via plugging in a partition

strategy that partitions a query into a set of sub-queries. The key to

ensure the quality of progressive processing is to devise a strategy



that ensures the average execution time of sub-queries is close to the

update frequency, which can then satisfy both the quality metrics

Q.1 and Q.2. We next present three different partition strategies. As

SeqWdInit has the best performance, all these strategies follow

the same scheme of SeqWdInit.

6.2 Fixed Time Window Partition (FixTW)

For a query searching for events on n hosts (h1, . . . ,hn ) in the

time window T , FixTW partitions the query based on a fixed time

window (Ti ) for events on the host hi . Ti is computed as Uf ∗

epi/дi , where Uf is the update frequency interval, epi is the event

processing rate of hi , and дi is the average data generating rate

computed using the total events of hi divided by the duration of T .

6.3 Fixed Workload Partition (FixWd)

For a query searching for events on n hosts (h1, . . . ,hn ) in the time

window T , FixWd partitions the query based on a fixed workload

(Wdi ) for events on the host hi .Wdi is computed asUf ∗epi , where

Uf is the update frequency interval and epi is the event processing

rate of hi . Note that the initialization costs are considered as virtual

workloads in each host.

6.4 Adaptive Workload Partition (AdWd)

Both FixTW and FixWd assume that the event processing rates

are constant. However, as database systems usually employ caches

and the event processing rates are much higher when the events

are in the caches, the event processing rates fluctuate wildly dur-

ing runtime. Thus, the execution time of the sub-queries parti-

tioned by FixTW and FixWd could be far from the update fre-

quency. To address this challenge, we propose an adaptive partition

strategy, AdWd, which dynamically adjusts event processing rates

during runtime. In particular, we propose a technique called on-

line adaptive workload prediction, which leverages a set of latest

⟨execution_time,workload⟩ pairs as feedback to learn new event

processing rates and predict workloads for subsequent sub-queries.

To guide the adaptive learning, we adopt the optimization algorithm

gradient descent that is commonly used in online learning, and is

also utilized in the areas of program analysis and repair [42, 43, 45].

Learning with gradient descent: The goal of learning is to adjust

the event processing rate obtained in the non-cache environment

to fit the latest execution results. It computes a new data processing

rate (ep) and initialization time (it ) that approximate the actual

event processing rate in the current running environment. In other

words, it finds the local minimum ep′, it ′ such that for each new

execution result ⟨x ,y⟩, where x represents the execution time and y

represents the workload, the execution time x ′ of the next estimated

workload y′ is closest to the update frequencyUf . To compute the

gradient д⃗ w.r.t. the new training data set S⃗ , we utilize the following

loss function loss (x⃗ , y⃗) = 1
N

∑N
i=1 (yi − (epxi + it ))

2, where ⟨x⃗ , y⃗⟩

are the execution results in S⃗ whose size is N .

By taking the derivatives of loss function equation, we obtain

the gradient д⃗:

дa =
∂loss (x⃗ , y⃗)

∂ep
=

2

N

∑N

i=1
−xi ∗ (yi − (ep ∗ xi + it )) (1)

дb =
∂loss (x⃗ , y⃗)

∂it
=

2

N

∑N

i=1
−(yi − (ep ∗ xi + it )) (2)

After computing the gradient, we update the event processing

rate and initialization time respectively as follows: ep′ = ep − γдa ,

it ′ = it − γдb . The values ep′ and it ′ combine both latest and

historical execution results that outline a comprehensive picture of

the system runtime environment, while the learning rate γ controls

the weight of the latest execution results over the historical results.

Regularization: To avoid over-fitting, we place restrictions on the

bounds on the newly learned event processing rate ep′. Over-fitting

causes the prediction of a large workload for which the sub-query

has no way to return results within the update frequency. Our reg-

ularization uses the offline measured/predicted event processing

rates as the lower bound. For the upper bound, we compute the in-

stant event processing rate
y
x for each latest execution information

⟨x ,y⟩, and use the largest observed instant event processing rate as

the upper bound, which typically indicates that all the workloads

assigned to the sub-queries are pre-loaded in the cache.

Algorithm 1: Online Adaptive Workload Prediction

Input:Uf : update frequency from user input

k : current host
Si : index of first unprocessed event
M[1, ..., n]: host measurement/prediction
∆E : latest execution information ⟨x, y⟩
epmax : observed maximum event processing rate
γ : online learning rate

Output: D : workload for the subsequent sub-query
1 Initialize D ← 0 andU ′

f
← Uf ;

2 while more workload needed withinU ′
f
do

3 D′ ← 0;

4 isN ew ← false;

5 if Evt [Si ] is in a new host hk then
6 ep, it ← дetEPandIT (M, k );

7 epmax ← ep ;

8 isN ew ← true;

9 if it ≥ U ′
f
then

10 D ← D + 1 ∗ ep ; // 1s workload

11 Si ← Si + D ;

12 return D ;

13 else
14 ep ← adaptiveLearninд (ep, ∆E, γ );

15 if epmax ≤
y
x then

16 epmax ←
y
x ;

17 if isN ew == true then
18 D′ ← (U ′

f
− it ) ∗ ep ;

19 else
20 D′ ← U ′

f
∗ ep ;

// regularization

21 maxD ← U ′
f
∗ epmax ;

22 if D′ > maxD then
23 D′ ←maxD ;

24 Dr ← r emaininдEvent (M, k );

25 if D′ > Dr then

26 U ′
f
← U ′

f
−

Dr
ep ;

27 D ← D + Dr ;

28 k ← k + 1

29 else
30 D ← D + D′;

31 break;

32 Si ← Si + D ;

33 return D ;



Algorithm:Algorithm 1 shows how to predict each online adaptive

workload. AdWd follows the scheme of SeqWdInit by concate-

nating the events of all involved hosts as an array Evt , converting

initialization costs as virtual events, and processing the events in

the array sequentially. The inputs to the algorithm are the update

frequency (Uf ), the current host index (k), the index of the first

unprocessed event in Evt (Si ), the host measurement/prediction

(M), the latest execution information (∆E), the observed maximum

instant event processing rate (epmax ), and the learning rate (γ ).M

stores the information of the involved hosts’ offline measured (or

predicted) event processing rates and initialization time.

The algorithm starts by initializing the predicted workload (D)

to 0 and the remaining time within the update frequencyU ′
f
toUf

(Line 1). If Si indicates that it is the first time to access the host

hk ’s data, the event processing rate ep and initialization time it are

retrieved fromM[k] accordingly. In this case, if it is larger thanU ′
f

(i.e., even without any workload, the execution of this sub-query

will not finish within U ′
f
), we assign the default event size (i.e.,

events processed within 1s) as the predicted workload D and return

D (Lines 9ś12). On the other hand, if it is not the first access of

the host’s data, we set the initialization time as zero and use the

adaptive learning to learn a new event processing rate (Line 14).

epmax is then updated with the instant event processing rate if

necessary (Lines 15ś16). Based on the ep, the algorithm predicts

the workload D ′ (Lines 17ś20). To avoid over-fitting, the algorithm

applies the regularization accordingly to smooth D ′ if necessary

(Lines 21ś23).

After regularization, we check whether D ′ exceed the remaining

size of the current host hk (Lines 24ś25). If so, we compute the

execution time of the remaining workload on the host, deduct it

from U ′
f
, and start a new iteration to predict the workload for a

new host hk+1 (Lines 26ś28). Otherwise, we update the predicted

workload D with D ′ and return D. Finally, the algorithm updates

Si based on D (Line 32).

7 IMPLEMENTATION

Based on the ProbeQ grammar (Table 1), we leverage ANTLR 4 [1]

to build the lexer and the parser, which can automatically build

syntactic parse trees and provide various types of tree walkers. We

then build an interpreter on top of the tree walkers to perform

semantic analysis of ProbeQ queries and execute the queries. After

the semantic analysis, our interpreter produces a query context for

each ProbeQ query and adopts template-based [44] synthesis to

synthesize queries for retrieving data. As we store data in relational

databases, our system synthesizes a SQL query for each sub-query

based on the following query template.

1 SELECT |return|

2 FROM |subject_type| |subject_id|,

3 |object_type| |object_id|, |event_type| |event_id|

4 WHERE |entity_join|

5 AND |event_op|

6 AND |event_attributes|

Query 3: SQL query synthesis template

Table 3: Results of Real-World Case Study

Update
frequency (s)

# sub-queries
Average sub-query
execution time (s)

Total time (s)

s1
5 171 5.19 223.4
10 81 10.55 217.08
15 67 12.54 212.16

s2
5 142 5.77 205.71
10 78 10.05 198.36
15 59 13.08 197.36

8 EVALUATION

We have built a prototype system of ProbeQ based on AdWd and

deployed it at NEC Labs America comprising around 100 hosts. To

evaluate the effectiveness of AdWd, we conduct comprehensive

evaluations on the commonly used queries for suspicious behav-

iors. In our evaluations, we seek to answer the following research

questions:

• RQ 1: How effective is AdWd in satisfying two quality met-

rics of progressive processing?

• RQ 2: How well does AdWd perform in comparison with

FixWd and FixTW?

• RQ 3: How much do learning rates impact the performance

of AdWd?

• RQ 4: Howmuch do the predicted models in Section 5 impact

the performance of AdWd?

8.1 Evaluation Setup

The evaluations are conducted on a server with an Intel(R) Xeon(R)

CPU E5-2660 (2.20GHz), 64GB of RAM, and a RAID that supports

four concurrent reads/writes. The system monitoring data is stored

in a set of PostgreSQL databases, with one database corresponding

to one day of data. We use five-day data in April that has a total

size of about 230GB for our evaluations, and use 5.0E-4 as the

learning rate of the AdWd strategy1. Before each query execution,

we cleared up the cache as a matter of fact that no data is cached for

the first time access. Note that in RQ1 and RQ2 we use the predicted

models to obtain all hosts’ event processing rates and initialization

time (Section 5). While in RQ3, we use the measured models to

minimize the background noise when measuring the impacts of

learning rates. RQ4 shows the performance comparison between

the measured models and the predicted models.

8.2 RQ 1: Effectiveness of AdWd

We conduct evaluations on two suspicious behaviors in the real

world: (1) s1: command history probing; (2) s2: processes erasing

traces from system files. The ProbeQ queries for s1śs2 are Query 2

and Query 1. These suspicious behaviors are observed rarely in

daily usage and thus are common to be searched with a large time

window. In our evaluations, we set the time window for s1śs2 to be

five days in April on a host. The SQL queries for s1śs2 run for 364.8s

and 268.0s respectively. The number of events to be processed is

over 44 million.

Table 3 shows the results when using progressive processingwith

three different update frequencies (5s, 10s, and 15s). These update

frequencies are the most representative frequencies specified by

system experts. Based on the study results at Section 4, we choose

1Learning rates ranging from 1.0E-4 to 1.0E-3 achieve best performance.



Table 4: Comparison among FixTW, FixWd, and AdWd

Strategy
Average sub-query execution time (s)
2s 5s 10s 15s 20s

AdWd (5.0E-4) 2.14 5.29 10.71 14.5 18.34
FixWd 5.4 12.1 21.5 28.9 34.79
FixTW 5.91 13.37 24.46 33.5 41.89
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Figure 6: Q.1 Responsiveness Comparison among FixTW,

FixWd, and AdWd

four worker threads to run the sub-queries. The results show that

the average sub-query execution time is quite close to the update

frequencies (only a 9.1% deviation from the update frequencies),

and on average the total execution time of the queries is 32.8% faster

than the corresponding SQL queries without any optimization. To

evaluate the overhead of AdWd on the total execution time, we run

SeqWdInit (i.e., no progressive processing) directly on s1śs2 and

the execution time is 220.69s and 197.14s, respectively. Such results

show that for these two queries, AdWd has a negligible overhead

(max overhead 4.3%) on the total execution time.

8.3 RQ 2: Comparison with FixWd and FixTW

In RQ2, we compare the performances of AdWd, FixWd, and

FixTW in terms of average sub-query execution time (Table 4), Q.1

Responsiveness (Figure 6), and Q.2 Overhead (Table 5). We choose

the update frequencies from 2s to 20s, and use eight ProbeQ queries

that cover five hosts from different partition tables, which cover

more scenarios in querying the behaviors. The size of events pro-

cessed by the queries ranges from 3.5 to 20 million. We execute

each query using the worker thread from one to five and obtain

their average results. Note that RQ2-RQ4 use the same query set.

Table 4 shows that AdWd has the average sub-query execution

time closest to the update frequencies (6.3% deviation), while both

FixTW and FixWd have much larger average sub-query execution

time (119% and 148% deviations, respectively). This is in line with

our expectations, as FixWd and FixTW partition the query accord-

ing to a fixed time window or workload, which cannot reflect the

cache mechanism whose event processing rate is much higher than

the non-cache counterpart. In Figure 6, we can see that the average

sub-query execution time directly affects the quality of responsive-

ness, where AdWd achieves a highest response rate (on average

84.5%). The reason is that if the average sub-query execution time

deviates significantly from the update frequency, the execution of

a sub-query typically spans several update cycles and causes the

response rate to drop. Table 5 shows the overhead of each partition

strategy on the total execution time. When the update frequency is

Table 5: Q.2 Overhead Comparison among FixTW, FixWd,

and AdWd

Strategy
Overhead (%)

2s 5s 10s 15s 20s
AdWd (5.0E-4) 53.82 21.99 7.96 4.37 3.79

FixWd 19.23 10.19 7.15 4.13 4.16
FixTW 22.99 9.46 5.29 5.48 3.35

too small (e.g., 2s), AdWd generates much more sub-queries than

the other two strategies and thus has a higher overhead. Nonethe-

less, if the update frequency is greater than 5s,AdWd’s performance

is comparable to FixWd and FixTW. Overall, AdWd can achieve

the best user experiences in terms of progressively showing the

partial results and introducing low overhead.

8.4 RQ 3: Impact of Learning Rates

In AdWd, the learning rate controls the fitting degree of the gra-

dient descent algorithm. A learning rate that is too high or too

low causes over-fitting or under-fitting that inaccurately partitions

the workload and hence makes the average sub-query execution

time deviate from the update frequency. We evaluate five different

learning rates in the range from 1.0E-5 to 1.0E-3 as shown in Figure

7. The results show that the learning rates around 5.0E-4 achieve

the best performance. Note that in this evaluation only queries with

more than 20 sub-query executions are used. In this way, we ensure

that there are enough data points for us to measure the impact of

learning rates more accurately.

8.5 RQ 4: Impact of Predicted Models

Figure 8 shows the results based on the measured models and the

predicted models. Overall, the average sub-query execution time of

measured models is slightly closer to the update frequency (varia-

tion is also slightly smaller) than the predicted models. However,

RQ1 and RQ2 show that such slight imprecision brought by the

predicted models do not affect the performance of AdWd signif-

icantly and AdWd can still achieve high quality of progressive

processing. Moreover, using the predicted models eliminates the

need to measure the models for each host, which is not scalable in

a large organization, AdWd with the predicted models is a much

more practical solution.

9 THREATS TO VALIDITY

External Validity: Our evaluations are conducted on a limited

number of queries, which may introduce threats to the external

validity of our results. To mitigate these threats, we choose repre-

sentative queries that search for suspicious behaviors (shown in

this paper), rather than the queries focusing on statistics-related

behaviors (e.g., count(*)). Also, to understand the impacts of result

sizes controlled by various filtering conditions, we further evaluate

queries (shown in Figure 9) with different types of filtering con-

ditions: no-filtering, partial-filtering, and complete-filtering, and

AdWd achieves a promising performance, similar to the results in

Section 8.

Internal Validity: The measurement of a host for the prediction of

other hosts may be affected by the background noise and lead to the

inaccurate prediction. We mitigate this threat by taking each type

of experiments for three times and use their average value for the
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Figure 7: Impacts of different learning rates (1.0E-5, 5.0E-5, 1.0E-4, 5.0E-4, 1.0E-3).
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Figure 8: Comparison between precise measurement and prediction when learning rate is 5.0E-4.
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Figure 9: Impacts of different filtering conditions when learning rate is 5.0E-4.

prediction. In addition, AdWd is able to adjust the event processing

rate dynamically based on the latest execution information, which

minimizes the impacts of the prediction imprecision on the overall

performance.

10 RELATED WORK

Querying software engineering data: Effective and expressive

query languages have been well studied in software repository anal-

ysis. Bugzilla [3] enables a user to search bug reports via specifying

predicates. JIRA [9] provides an expressive query language JQL [10]

to retrieve such reports from revision histories. Kenyon [21] extracts

source code change histories from SCM systems to assist software

evolution research. TA-RE [30] is an exchange language for mining

software changes. SCQL [29] presents a first-order temporal-logic

based query language for source control repositories. DebugAdvi-

sor [20] allows a fat query containing natural language description

to achieve fast diagnosis. BOA [23] provides a language-based in-

frastructure for analyzing software repositories. Sun et al. [46]

designed a sequential pattern query language to analyze sequential

software engineering data. In contrast, ProbeQ aims to address

efficient system-behavioral queries for OS-level system monitoring.

It not only leverages the data characteristics of system events to

execute queries in parallel, but also supports progressive-result

processing, which is the core challenge for system monitoring.

Program behaviorial query: Research efforts on finding speci-

fied program behaviors via query language are remotely related.

Brunel et al. [22] proposed an extension to computation tree logic

to perform collateral code evolution. Koskinen [31] defined the

behavioral profile language by using UML meta-model extensions.

Martin et al. [37] presented Program Query Language to verify

runtime program behavior. Meredith et al. [39] utilized parametric

context free grammars to examine runtime property conformance.

Compared to the prior work, which attempted to discover certain

program logic, ProbeQ targets at a very different problem, which

is to efficiently and progressively search system monitoring data in

enterprise.



System anomaly detection: Different techniques have been pro-

posed to detect system anomalies in the literature. They can be

used in detecting malware [32], internal threat [47], and attack

prediction [48]. However, they do not focus on efficiently query-

ing system behaviors or progressively providing execution results.

Some related work, such as AIQL [26] and PrioTracker [35] sup-

ports timely attack investigation, but can still be stuck when a query

takes lots of time to return. Other related work, such as SAQL [25],

enables timely anomaly detection directly over the data stream

of system monitoring data. Unlike these techniques, ProbeQ pro-

vides a unified interface to progressively process system-behavioral

queries.

Performance optimization for digital forensics queries: Prior

efforts have also been made to optimize the query efficiency for

security logs. Ning and Xu [40] adopted main memory index struc-

tures and query optimization to correlate security alerts. Alink et

al. [19] proposed an XML-based approach to manage and search dig-

ital forensics traces. Marziale et al. [38] studied the effectiveness of

offloading digital forensics tools to a GPU for parallel computation.

Winter et al. [51] presented two indexing strategies for robust im-

age hashes. While previous work addressed the query performance

in a generic manner, ProbeQ designed a domain-specific query

language and specific optimization to achieve efficient exploration

for fine-grained system monitoring data.

Log management tools: Splunk [15] is a platform that automati-

cally parses application and system logs. It provides a Unix shell-like

Search Processing Language to filter log entries based on keywords.

Elasticsearch [6] is a distributed search and analytics engine, which

is based on Lucene [2] and can be used to search documents. As

these tools are not optimized for system monitoring data, they

cannot partition queries based on the spatial and temporal proper-

ties of data to speed up query execution. Besides, neither supports

progressive processing based on adaptive prediction as ProbeQ

does. Moreover, the shell-like language of Splunk and the search

language of Elasticsearch are not intuitive for expressing system

events, which are interactions among system resources.

11 CONCLUSION

In this work, we proposed ProbeQ to progressively process system-

behavioral queries. It has a domain-specific query language that

allows system experts to interactively investigate risky system

behaviors in an organization by writing concise ProbeQ queries and

getting partial results progressively over system monitoring data.

The query engine of ProbeQ partitions a query into sub-queries

for parallel execution and reports the partial results periodically

based on the specified update frequency. We propose three partition

strategies and compare them against two metrics, responsiveness

and overhead, on real-world large datasets. Results indicate AdWd

outperforms the other two alternatives.
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