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ABSTRACT
The need for countering Advanced Persistent Threat (APT)
attacks has led to the solutions that ubiquitously moni-
tor system activities in each enterprise host, and perform
timely attack investigation over the monitoring data for un-
covering the attack sequence. However, existing general-
purpose query systems lack explicit language constructs for
expressing key properties of major attack behaviors, and
their semantics-agnostic design often produces inefficient ex-
ecution plans for queries. To address these limitations, we
build Aiql, a novel query system that is designed with novel
types of domain-specific optimizations to enable efficient at-
tack investigation. Aiql provides (1) a domain-specific data
model and storage for storing the massive system monitor-
ing data, (2) a domain-specific query language, Attack In-
vestigation Query Language (Aiql) that integrates critical
primitives for expressing major attack behaviors, and (3) an
optimized query engine based on the characteristics of the
data and the semantics of the query to efficiently schedule
the execution. We have deployed Aiql in NEC Labs Amer-
ica comprising 150 hosts. In our demo, we aim to show the
complete usage scenario of Aiql by (1) performing an APT
attack in a controlled environment, and (2) using Aiql to in-
vestigate such attack by querying the collected system mon-
itoring data that contains the attack traces. The audience
will have the option to perform the APT attack themselves
under our guidance, and interact with the system and inves-
tigate the attack via issuing queries and checking the query
results through our web UI.
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Advanced Persistent Threat (APT) attacks are sophisti-
cated (involving many individual attack steps across many
hosts and exploiting various vulnerabilities) and stealthy
(each individual step is not suspicious enough), plaguing
many well-protected businesses with significant losses [6,
4]. In order for enterprises to counter APT attacks, re-
cent approaches based on ubiquitous system monitoring have
emerged as an important solution for monitoring system ac-
tivities and performing attack investigation [9, 10, 8, 7]. Sys-
tem monitoring observes system calls at the kernel level to
collect system-level events that record system interactions
among system entities (e.g., processes, files, and network
sockets). Collection of system monitoring data enables secu-
rity analysts to investigate these attacks by querying attack
behaviors over the historical data.

Attack investigation is a time-sensitive task. However,
there are two major challenges for building a query system
to support efficient and timely attack investigation:

(1) Attack Behavior Specification: The system needs to
provide a query language with specialized constructs for ex-
pressing major attack behaviors: a. Multi-step attacks:
complex attacks such as APTs typically involve multiple sys-
tem activities connected by specific attribute relationships
(e.g., the same process reads a sensitive file and accesses the
network) or temporal relationships (e.g., file read happens
before network access), which requires language constructs
to easily specify relationships among activities; b. Depen-
dency tracking of attacks: dependency tracking is widely
used in investigation to track causality of data for discover-
ing the attack entry [9], which requires language constructs
to easily chain constraints among activities; c. Abnormal
system behaviors: frequency-based anomaly models are
widely used to investigate abnormal system behaviors, such
as network access spikes, which requires language constructs
to easily specify sliding windows and statistical aggregation
of system activities and compare the aggregate results in the
current window with the results in previous windows.

(2) Timely Big-Data Analysis: System monitoring pro-
duces a huge amount of daily logs [9, 10] (∼ 50 GB per day
for 100 hosts), and the investigation of APT attacks typi-
cally requires the enterprise to keep at least a 0.5 ∼ 1 year
worth of data. Such a huge amount of data poses challenges
for a timely investigation: the system needs to provide effi-
cient data storage and query execution engine.

Unfortunately, existing query systems do not address both
of these inherent challenges: (1) Existing query languages
in relational databases (e.g., PostgreSQL), graph databases
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Figure 1: Architecture of the Aiql system

(e.g., Neo4j), and other NoSQL databases (e.g., MongoDB,
SPARQL) lack explicit constructs to chain constraints among
system activities and specify their relationships. To spec-
ify an attack behavior with multiple steps, these languages
often lead to large queries with many joins and constraints
mixed together, posing great challenges for performance tun-
ing. Constructing such queries correctly is also time con-
suming and error-prone. Moreover, none of these languages
provide explicit constructs for expressing behavioral mod-
els with accesses to historical aggregate results; (2) System
monitoring data is generated with a timestamp on a specific
host in the enterprise, exhibiting strong spatial and temporal
properties. However, existing query systems are designed to
work with general-purpose data thus missing opportunities
for optimizations based on the domain data characteristics,
which might lead to some queries executing very inefficiently.

To address these challenges, we build Aiql [8], a system
that enables security analysts to perform efficient attack
investigation via querying system monitoring data. Aiql
employs three novel types of optimizations: (1) Aiql pro-
vides a domain-specific query language, Attack Investigation
Query Language (Aiql), which is optimized to express the
three aforementioned types of attack behaviors; (2) Aiql
provides a domain-specific data model and storage for scal-
ing the storage; (3)Aiql optimizes the query engine based on
the domain-specific characteristics of the system monitoring
data and the semantics of the query for efficient execution.

We have deployed the Aiql system in NEC Labs America
comprising 150 hosts and made a demo video [3]. In our
demo, we aim to show the complete usage scenario of Aiql.
We first perform an APT attack in a controlled environment
(for protecting the normal business) that exfiltrates sensitive
data from database server by exploiting multiple vulnera-
bilities in multiple steps. The system monitoring data that
contains the attack traces is collected by our data collec-
tion agents and stored in our optimized databases. Then,
we use Aiql to investigate the attack by querying the col-
lected data. The audience will have the option to perform
the APT attack themselves under our guidance, and inter-
act with the system and investigate the attack via issuing
queries and checking the query results through our web UI.
The audience will also experience the superiority of Aiql by
comparing the conciseness and performance of Aiql queries
with SQL queries executed in PostgreSQL databases.

2. THE AIQL SYSTEM ARCHITECTURE
Figure 1 shows the architecture of the Aiql system. Aiql

takes an input query from the user (e.g., security analyst)
that specifies certain attack behaviors to be investigated,
executes the query, and retrieves the matched results.

2.1 Data Collection and Storage
Data Model. System monitoring data records the inter-
actions among system entities as system events. Each of

the recorded event occurs on a particular host at a par-
ticular time, thus exhibiting strong spatial and temporal
properties. In our data model, we consider system entities
as files, processes, and network connections. We consider a
system event as the interaction between two system entities
represented as 〈subject, operation, object〉 (SVO). Subjects
are processes originating from software applications (e.g.,
Firefox), and objects can be files, processes, and network
connections. We categorize system events into three types
according to their objects, namely file events, process events,
and network events.

Data Collection. We develop data collection agents based
on mature system monitoring frameworks: auditd for Linux,
ETW for Windows, and DTrace for MacOS. Our agents are
deployed across servers, desktops, and laptops in the enter-
prise and collect critical security-related attributes (e.g., file
name, process executable name, IP, port, etc.; details in [8]).

Data Storage. Querying complex attack behaviors typ-
ically requires the efficient support for joins. Compared
to graph databases and other NoSQL databases, relational
databases come with mature indexing mechanisms and are
more scalable to the massive data in our context. Thus,
in Aiql, we store the collected system monitoring data in
relational databases (PostgreSQL and Greenplum). We fur-
ther optimize the write throughput and the data storage
using techniques such as data deduplication and in-memory
indexes, batch commit, time and space partitioning, and
hypertable (details in [8]).

2.2 AIQL Query Language
We build the Aiql language using ANTLR 4. Our lan-

guage uniquely integrates a series of critical primitives for
concisely expressing three major types of attack behaviors.

2.2.1 Multievent AIQL query
Aiql provides explicit constructs for system events, spa-

tial/temporal constraints, and event temporal/attribute re-
lationships, which facilitates the specification of multi-step
attack behaviors. Query 1 shows a multievent Aiql query
that investigates the data exfiltration from database server:
the attacker leverages OSQL utility (osql.exe) to dump the
database content (backup1.dmp) and runs a malware (sbblv.
exe) to send the dump back to his host (XXX.129). Four event
patterns are declared (Lines 3-6) with two global constraints
(Lines 1-2), a temporal relationship (Line 7), and an implicit
attribute relationship (Lines 4-5 specify the same f1 in both
events). Desired attributes of matched events are returned
(Line 8) with context-aware syntax shortcuts adopted (i.e.,
p1 → p1.exe_name, f1 → f1.name, i1 → i1.dst_ip).

1 (at "mm/dd/2018") // time window (obfuscated)
2 agentid = xxx // SQL database server (obfuscated)
3 proc p1["%cmd.exe"] start proc p2["%osql.exe"] as evt1
4 proc p3["%sqlservr.exe"] write file f1["%backup1.dmp"] as

evt2



 

Windows
Client

Linux
Web Server

Database
ServerRouter

Internet

Windows
DC

a1 a2

a3

a4

a5

Attacker

Figure 2: Demonstration setup for the APT attack

5 proc p4["%sbblv.exe"] read file f1 as evt3
6 proc p4 read || write ip i1[dstip="XXX.129"] as evt4
7 with evt1 before evt2, evt2 before evt3, evt3 before evt4
8 return distinct p1, p2, p3, f1, p4, i1

Query 1: Data exfiltration from database server

2.2.2 Dependency AIQL query
Aiql provides explicit constructs for chaining constraints

among system events in the form of event path, which facil-
itates the dependency tracking of attacks. Query 2 shows a
forward dependency Aiql query that investigates the rami-
fication of a malware (info_stealer), which originates from
Host 1 (agentid = 1) and affects Host 2 (agentid = 2) through
an Apache web server. An example execution result may
show that p3 is the wget process that downloads the ma-
licious script from Host 2. The forward keyword (Line 2)
specifies the temporal order of the events: left event occurs
earlier. The operation connect (Line 4) indicates that the
tracking is across different hosts.

1 (at "mm/dd/2018") // time window (obfuscated)
2 forward: proc p1["%/bin/cp%", agentid = 1] ->[write] file

f1["/var/www/%info_stealer%"]
3 <-[read] proc p2["%apache%"]
4 ->[connect] proc p3[agentid=2] // tracking across hosts
5 ->[write] file f2["%info_stealer%"]
6 return f1, p1, p2, p3, f2

Query 2: Forward tracking for malware ramification

2.2.3 Anomaly AIQL query
Aiql provides explicit constructs for sliding windows, ag-

gregation functions, and accesses to historical aggregate re-
sults, which facilitates the specification of frequency-based
anomaly models. Query 3 shows an anomaly Aiql query
that specifies a 1-minute sliding window (Line 3) and com-
putes a moving average (Line 7) to investigate processes on
the database server (Line 2) that transfer a large amount
of data to a suspicious IP (XXX.129). An example execution
result may show that the process p is sbblv.exe, which is
suspicious and deserves further investigation.

1 (at "mm/dd/2018") // time window (obfuscated)
2 agentid = xxx // SQL database server (obfuscated)
3 window = 1 min, step = 10 sec
4 proc p write ip i[dstip="XXX.129"] as evt
5 return p, avg(evt.amount) as amt
6 group by p
7 having (amt > 2 * (amt + amt[1] + amt[2]) / 3)

Query 3: Large data transfer from database server

2.3 AIQL Query Execution Engine
Our query execution engine leverages domain-specific char-

acteristics of the data and the semantics of the query to ef-
ficiently schedule the execution. Optimizing a query with
many constraints is a difficult task due to the complexities
of joins and constraints. For a multievent query, Aiql ad-
dresses this challenge by synthesizing a SQL data query for
every event pattern and schedules the execution of these

data queries using our optimized scheduling strategy, rather
than weaving all the joins and constraints together in a large
SQL query and relying on the inefficient default SQL engine
scheduling. Our optimized scheduling strategy (details in [8])
has two key insights: (1) for a query with multiple event
patterns, we prioritize the search of event patterns with
higher pruning power, maximizing the reduction of irrele-
vant events as early as possible; (2) we partition the query
into independent sub-queries along the temporal (i.e., time
window) and spatial (i.e., agent ID) dimensions and execute
these sub-queries in parallel. For a dependency query, the
parser compiles it to a semantically equivalent multievent
query for execution. For an anomaly query, the engine par-
titions the events into sliding windows by the timestamp,
computes the aggregate results, and enforces the filters.

3. DEMONSTRATION OUTLINE
Demonstration Setup. We have deployed Aiql in NEC
Labs America comprising 150 hosts. The purpose of our
demo is to illustrate the complete usage scenario of Aiql
and showcase its superiority in enabling efficient attack in-
vestigation. To achieve this goal, we perform an APT attack
in a controlled environment (Figure 2) using a set of known
exploits. The APT attack consists of five steps as follows:

a1 Initial Compromise: The attacker first exploits the Un-
Real IRC server remote code execution vulnerability [1]
to create a telnet connection to his host.

a2 Malware Infection: The attacker uploads a malware via
the connection and waits for the malware to infect other
hosts to gain access to the intranet.

a3 Privilege Escalation: With the access to the intranet, the
attacker leverages other vulnerabilities [2] to escalate his
privilege and executes memory dumping tools (Mimikatz,
Kiwi) to obtain administrator credentials.

a4 Obtain User Credentials: The attacker penetrates into
the domain controller and executes password dumping
tools (PwDump7.exe, WCE.exe) to obtain the credentials
of all users.

a5 Data Exfiltration: Finally, the attacker penetrates into
the database server and dumps the data back to his host.

Live End-to-End Investigation Procedure. After per-
forming the attack, the system monitoring data that con-
tains the attack traces is collected by our data collection
agents and stored in our optimized databases. Next, we be-
gin the attack investigation process by constructing and iter-
atively revising Aiql queries. Assuming no prior knowledge
of the attack, we start the investigation by first construct-
ing an anomaly Aiql query and identify a process “power-
shell.exe” transferring large data to a suspicious external IP
“XXX.129” from the database server. We then construct
a multievent Aiql query to investigate the files read by
this process and identify a database dump file “db.bak”.
We further investigate the creation process of this dump
file and identify “sqlservr.exe”, which is a standard SQL
server process with verified signature. We also confirm that
the process “powershell.exe” creates a connection to the IP
“XXX.129” before the data transfer. This confirms the exis-
tence of data exfiltration from the database server and com-
pletes the investigation of the step a5. We follow a similar
procedure for investigating the steps a1-a4. Please refer to
[5] for more investigation details and all Aiql queries.
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Web UI. In our demo, the audience will have the option
to perform the attack under our guidance and do the inves-
tigation themselves by interacting with Aiql. To facilitate
such interaction, we built a web UI (Figure 3) upon Apache
Tomcat. Our web UI consists of (1) an input box for enter-
ing Aiql queries, (2) an execution status area to show the
query execution time, and (3) an interactive table that visu-
alizes and manages the execution results. Furthermore, our
web UI provides query editing and result analysis features to
facilitate efficient investigation: (1) syntax highlighting for
query construction, (2) syntax checking for query debug-
ging, and (3) sorting and searching for result management.
To get a better sense of how to use the web UI and interpret
the query results, please refer to our demo video [3].

Post-Demo Evaluation: AIQL vs. PostgreSQL (w/
Our Optimized Storage). Our investigation used 19 mul-
tievent queries and 1 anomaly query, touching 85 GB of
data/257 million events. Figure 4 shows the log10-transformed
execution time of Aiql queries and the semantically equiv-
alent SQL queries executed in PostgreSQL. Note that both
Aiql and PostgreSQL employ our data storage optimiza-
tions. We observe clear superiority of Aiql in scheduling
the execution of complex queries (e.g., a2-2, a5-5 ). The
total execution time of Aiql is 3.6 minutes, achieving 21×
performance speedup over PostgreSQL (77 minutes). For
the query conciseness, SQL queries contain at least 3.0×
more constraints, 3.5× more words, and 5.2× more charac-
ters (excluding spaces) than AIQL queries.

Post-Demo Evaluation: AIQL vs. PostgreSQL (w/o
Our Optimized Storage) vs. Neo4j. In another case
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Figure 5: Log10-transformed query execution time for an-
other APT attack in [8]

study of APT attack [8], we evaluated the performance of
Aiql against PostgreSQL w/o our optimizations and Neo4j.
As shown in Figure 5, the Aiql system as a whole is much
faster than PostgreSQL (124× speedup) and Neo4j (157×
speedup). In particular, Neo4j runs generally slower than
PostgreSQL since it lacks support for efficient joins, which
are required in expressing attack behaviors with multiple
steps. As the attack behaviors become more complex, be-
sides performance degradation, both SQL and Cypher queries
become quite verbose with many joins and constraints, mak-
ing it labor-intensive and error prone in constructing queries
for timely attack investigation [8].

4. CONCLUSION
We have presented Aiql, a novel system for efficient at-

tack investigation via querying system monitoring data. Com-
pared with existing solutions, Aiql significantly reduces the
cycle time for interactive investigation and improves the
query conciseness.
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