APPBDS: LLM-Powered Description Synthesis for
Sensitive Behaviors in Mobile Apps

Zichen Liu
School of Computing and Augmented Intelligence
Arizona State University
Tempe, AZ, USA
zliu396 @asu.edu

Abstract—As mobile applications (i.e., apps) increasingly man-
age a wide variety of user needs, their access to sensitive data
intensifies privacy concerns among users. While app markets
employ permissions to regulate private data access, the lack of
explanation for permission usage renders this mechanism less
effective. Existing techniques that extract explanatory sentences
from app descriptions to inform users about sensitive behaviors
are also limited. Many app behaviors remain unexplained in
app descriptions. To address these issues, we propose APPBDS,
a novel approach that integrates program analysis with Large
Language Models (LLMs) to process code semantics and UI con-
texts, further complemented by privacy policies and information
from similar apps, in order to generate detailed explanations
for apps’ sensitive behaviors. Specifically, APPBDS integrates
code semantics with UI contexts to build a Ul-Fused Call
Graph (UCG) for each app. Additionally, APPBDS summarizes
permission-related propositions from privacy policies and utilizes
similar apps’ information from a knowledge base (PP-KB) to
improve LLMs’ domain knowledge in explaining permission
usage. Our evaluation on 270 real-world apps demonstrates that
APPBDS significantly outperforms state-of-the-art approaches in
richness, specificity, and semantic relatedness, while also proving
highly robust against common code obfuscation.

I. INTRODUCTION

Advancements in smartphone technology have paved the
way for a greater variety of mobile applications (apps), attract-
ing an ever-growing number of users. However, aggressive use
of users’ privacy data by these apps raises serious concerns
[, [2], (3], [4]. To address these concerns, app stores have in-
troduced stringent privacy standards—for instance, the Apple
App Store and Google Play employ “nutrition labels” [3], [6]]
and runtime permission requests [7] to enhance transparency.
Despite these measures, research shows that the presented
information is often limited and unintuitive [8], [9], [10],
as most approaches focus on what data is collected, rather
than how it is actually used, leaving users with an incomplete
understanding of privacy risks.

To address these limitations, existing research efforts [8]],
[L1] have been put forth to provide descriptions by identifying
sentences in app descriptions. As shown in these studies,
while app descriptions are mainly designed to describe apps’
functionalities and features, they also include sentences that
provide justifications for certain permissions. Unfortunately,
the studies also reveal that only 37.37% of the sensitive
behaviors in the surveyed apps (1,292) have descriptions
that explain the apps’ sensitive behaviors, and thus these

Xusheng Xiao
School of Computing and Augmented Intelligence
Arizona State University
Tempe, AZ, USA
xusheng.xiao @asu.edu

approaches are not reliable. There also exist code comment
generation techniques and permission translation techniques
based on predefined models [12]], [13], [14], but they mainly
focus on explaining the functionality of the code rather than
the security implication of the apps’ behaviors.

With the rise of neural language translation techniques [[15]],
[L16], research has progressed toward automated methods that
synthesize natural language explanations to directly describe
how users’ private data is used. For example, a recent ap-
proach [9] trains an encoder-decoder model to translate code
semantics, Ul texts, and privacy policies into descriptions that
explain apps’ permission usage. These descriptions can be
integrated into runtime permission dialogs to inform users of
potential privacy risks and support informed decision-making.
However, due to the vast amount of app data and the limited
capacity of encoder-decoder models, such approaches struggle
to generate detailed and app-specific behavior descriptions,
especially for rare behaviors that are underrepresented in the
training data and for long input sequences that exceed the
model’s processing limits.

The rapid evolution of Large Language Models
(LLMs) [17], [18], [19], [20], [21], equipped with
extensive knowledge and strong reasoning and synthesis
capabilities, opens new opportunities for generating high-
quality permission usage explanations. In this paper, we
present APPBDS, a novel approach that leverages LLMs to
process contextual information from code semantics and Ul
contexts, along with privacy policies and similar apps, to
generate rich, app-specific descriptions of sensitive behaviors.
We focus on Android apps due to their market dominance
and the openness of the development ecosystem. Still, despite
the advanced comprehension and synthesis abilities of LLMs,
applying them directly to generate descriptions for apps’
permission uses poses several major challenges.

First, as shown in the recent study [9], [11], [22]], under-
standing permission usage requires integrating three comple-
mentary information sources: code semantics, Ul contexts, and
privacy policies. Each source provides only a partial view of
the app’s behavior: code reveals implementation details but
lacks explanation, privacy policies offer general descriptions
but may be copied from similar apps, and UI contexts pro-
vide user-facing information that can bridge the gap between
implementation and policy. These three types of information

are distributed differently and contain distinct information for

behavior explanation, making it difficult to generate high-

quality descriptions based on a single source.

Second, handling the complex structure within each in-
formation source poses another significant challenge. App
code contains extensive implementation details, with only
a small portion relevant to permission usage. Similarly, Ul
contexts include layout information and resources that may
not contribute to understanding sensitive behaviors. Although
LLMs can handle vast inputs, the presence of irrelevant
information significantly hinders their performance, making
effective filtering and prioritization essential yet technically
challenging.

Third, privacy policies are notoriously lengthy, difficult to
understand, and often of questionable quality [9], [22]]. They
often contain a substantial amount of irrelevant information,
such as legal information and user agreements. Furthermore,
many privacy policies serve multiple apps from the same
developer, containing generic descriptions rather than app-
specific explanations. Since privacy policies provide the pri-
mary vocabulary for permission descriptions, low-quality poli-
cies tend to produce generic explanations like “Microphone is
used to record voice” instead of specific descriptions such as
“Use the microphone for real-time repetition of your speech
with fun voice effects.”

To address these challenges, the key insight of APPBDS lies
in the innovative integration of program analysis and LLMs.
APPBDS systematically identifies and summarizes privacy-
related code elements and Ul contexts, incorporates behavioral
knowledge from similar apps, and guides LLMs to extract
concise, privacy-relevant propositions from complex privacy
policies. This approach filters out irrelevant information while
preserving critical insights into app behaviors.

Specifically, APPBDS is powered by the following novel
designs.

e @ Ul-Fused Call Graph (UCG) Construction: we propose a
novel technique that integrates apps’ Ul contexts with code
structures and semantics and represents them as a UCG. In
particular, APPBDS extends static call graph analysis with
Android framework APIs to build the Inter-Component Call
Graph (ICCG) of apps [3l], [2], [23], [24], extracts texts from
UI layout files and decompiled code from the APK file, and
integrates them to construct the UCG of an app.

e @ Privacy-Relevant Behavior Summarization: An UCG
usually contains many irrelevant ones (e.g., obfuscated in-
ternal functions and system utility methods), introducing
noise that can trigger hallucinations in subsequent LLM
analysis. Thus, APPBDS employs node patterns summa-
rized from prior research [24]], [25], [3], [2], [26]] and
embedding-similarity-based retrieval methods to identify
privacy-relevant nodes that preserves privacy-critical be-
havior information while effectively minimizing noise. To
facilitate LLMs in analyzing these privacy-relevant nodes,
APPBDS further employs LLMs to summarize the Ul
contexts and their associated code behaviors described in
these nodes, facilitating LLMs in consuming these two types
of originally disconnected information.

o @ Permission Proposition Inference: To consume informa-
tion from privacy policies, APPBDS employs LLMs to filter
out irrelevant information and extract essential descriptions
for declared permissions. Specifically, APPBDS instructs
LLMs to process privacy policies and summarize key points
and claims as permission-related propositions, eliminating
the need to process lengthy privacy policy documents (re-
ferred to as PP) in later steps.

e @ Multi-Agent: To address the low quality of some pri-
vacy policies, we observe that similar apps can help im-
prove weak permission descriptions. APPBDS constructs a
Permission-related Proposition Knowledge Base (PP-KB) by
applying LLMs to extract permission-related propositions
from a large set of apps. By measuring the similarity
between an app’s propositions and those in the knowledge
base, APPBDS supplements an app’s own propositions with
those of highly similar apps, guiding LLMs to analyze the
UCG for supporting evidence.

Through these innovative designs, APPBDS can seamlessly
process heterogeneous information extracted from code, Ul
contexts, and privacy policies, effectively filtering out noisy
data to produce detailed, app-specific descriptions of per-
mission usage. Our evaluations on 270 real apps show that
APPBDS greatly outperforms the state-of-the-art approach,
DescribeCTX [9]], for the semantic metrics and the automatic
LLM evaluation metrics [27]], [28], [29] in terms of factuality
and semantic richness.

This paper makes the following contributions:

o A novel LLM-based approach for automatically generating
app permission usage descriptions by integrating code se-
mantics, Ul contexts, and privacy policies.

o An advanced method for constructing UCGs by integrating
UI and code semantics.

« A knowledge retrieval technique for leveraging similar apps
to expand LLMs’ domain knowledge.

o Comprehensive evaluation and ablation studies showing
the superiority of APPBDS over the state-of-the-art, with
improvements of 729%, 517%, and 656% in richness, speci-
ficity, and semantic relatedness, respectively.

« An empirical validation of the framework’s practical robust-
ness and generalizability, demonstrating high performance
against common code obfuscation and across multiple open-
source LLMs.

Our project is available at our project website [30].

II. OVERVIEW

As shown in Figure (I APPBDS consists of three phases:
Multi-source Data Acquisition and Preparation (Phase I),
Privacy-Relevant Node Filter and Summarization (Phase II),
and Permission Description Synthesis (Phase III).

Phase I prepares three heterogeneous types of information.
First, APPBDS performs static analysis on the input APK
to extract GUI layouts containing Ul context information
and the ICCG, then integrates these elements by mapping
UI contextual resources from the GUI layouts to the ICCG
nodes to create a @ UCG”. Second, APPBDS processes the
app’s PP and a sensitive permission from the app’s metadata,

Input . Phase | .
Multi-source Data Acquisition and Preparation

UCG Construction
App's APK GUI Layout

Static wreen=d ™[uce Ul-Fused Call
[2FK] Analysis Inter-Component j Builder Graph (UCG)

Call Graph (ICCG)

Privacy Policy (PP) Permission Proposition Inference
¥
Permission Type Permission-Related

Permission-Related G
— | PTOPOSItiON INfEIENCE | Proposition
© %

App Permission-related Similar App Retrieval
Proposition Knowledge

Base (PP-KB) @
—— | SiMilar App RetrieVal | ——- Similar Apps Info
e

Phase

Phase Il n
Privacy-Relevant Node Filter and Summarization Permission Description Synthesis

D
Privacy-Relevant Node Filter I
&
Subgraph Construction Qomput: App Permission Description]

Permission-Related
UCG Subgraphs

Permission-Related

UCG Summarizer o
Descrlptlon
@ Synthesizer +
OF %
Subgraphs Summarized

Permission-Related
Proposition

Similar Apps Info

Representations

Fig. 1: Overview of the APPBDS framework

employing an LLM agent to generate “ Permission-Related
Propositions”. Third, APPBDS queries the PP-KB to find
similar apps from the PP-KB based on proposition similarity
and retrieves their associated information, forming “@ Similar
App Info”.

Phase II takes the output of Phase I (@, , @) as
input, and generates a summary of the relevant information
(“@ Subgraphs Summarized Representations™). Specifically,
APPBDS implements a “(D) Privacy-Relevant Node Filter”
that leverages multiple predefined critical node patterns to ex-
tract nodes containing critical privacy-related information from
the UCG. These extracted nodes are then reconstructed into
three “@ Permission-Related UCG Subgraphs”. ApPBDS
then employs an LLM agent (“@ Permission-Related UCG
Summarizer”) to summarize each node within these subgraphs
to generate the summaries.

Phase III implements a “@ Description Synthesizer” that
employs LLM agents to process the summaries of the three
subgraphs, and perform cross-validation and integration of
the heterogeneous analysis results to synthesize the “@ App
Permission Description”.

A. Example Workflow of APPBDS

Figure [2] provides a step-by-step illustration of
APPBDS ’s workflow using a simplified real-world app
(com.gec.MarineApp), including examples of the input
sources, intermediate steps, and the generated description.

In Phase I, @ depicts a node from the constructed UCG,
showing the method signature, a function body that defines
three alert dialog types (poor GPS, low battery, and outside
allowed distance), and a Ul context featuring an anchor
alarm capability. depicts PP segments related to location
data, alongside two inferred permission-related propositions:
Proposition 1 specifies continuous location tracking for real-
time navigation, and Proposition 2 identifies location sharing
with support staff for safety purposes. @ presents retrieved
information of a similar app from the PP-KB, including a
relevant proposition and a description emphasizing security
and safety purposes for location data usage.

In Phase II, @ shows the Privacy-Relevant Node Filter,
which identifies relevant nodes using six patterns. @ illus-
trates the construction of three subgraphs from these nodes:
a general subgraph, a proposition-specialized subgraph, and a

similar-apps-specialized subgraph. @ shows the Permission-
Related UCG Summarizer, where LLM agents use specialized
prompts tailored to different node types to generate summa-
rized representations for each subgraph. @ shows an example
of such a summarized representation for the oncreate () method
of the class showanchoralertbialog.

In Phase III, @ shows the Description Synthesizer. This
module includes three LLM agents: one extracts permission-
related app features (Permission-Focused Analysis), another
matches code implementation with policy claims (Policy
Proposition Validation), and the third infers related features
from similar apps (Similar-App-Inspired Discovery). An ag-
gregator agent then integrates the findings from all three
agents.

The final output, @ shows the generated descriptions for
two permission-related features. The anchor mark and dis-
tance alert functionality is synthesized from the function code
and UI evidence in @, further informed by the safety-focused
usage patterns from the similar app in @ The location
tracking feature is derived from a separate TrackInfoactivity
node (not shown in this example node @), whose UI context
includes speed and altitude indicators, consistent with Propo-
sition 1 from . Proposition 2 from (B) (location sharing with
support staff) is excluded from the final description due to lack
of supporting evidence in the UCG analysis.

III. APPROACH
A. Phase I: Multi-source Data Acquisition and Preparation

UCG Construction. UCG Construction includes two com-
ponents (Static Analysis and UCG Builder) that extract code
semantics and Ul contexts from the input APK to create a
UCG (@).

Static Analysis. This component constructs an ICCG, which
is essential for analyzing Android apps as they are fundamen-
tally built upon app components [24], [2]], [9]. An ICCG is a
directed call graph where nodes represent methods with their
signatures and decompiled method bodies, and edges represent
calling relationships between methods. To construct the ICCG,
we leverage the Soot [31] and FlowDroid [32] frameworks
to build a static call graph enhanced with Android-specific
implicit calling relationships, including multi-threading, event-
driven, and inter-component communication (ICC) methods
[23], [33]. Although an ICCG captures calling relationships
and code logic, it lacks essential semantic information such

UCG Node Example (A) Permission Proposition Inference Permissi Pr o @ Similar Apps Info Example @
Signature: Permission Type: LOCATION (—1\ — - Inferred Permission Description
com.gec.anchoralarm.ShowAnchorAlertDialog:void onCreate() privacy palicy (PP) %@ Proposition 1: The app alcceS_ses the Security Features: Use |ocaﬁ':m t©
Function Body (from ICCG): Permission-Related user's continuous precise location to enhance security by detecting
; $i0 = <com.gec.la: int aa_warning_distancealarmdescr> Precise location permission » —»| Proposition Inference enable real-time navigation. unusual activity based on location.
8 $i0 = <com.gec.la: int aming_badsignalalarmdescr> (continuous) Used for accessing the — = A Related it
® $i0 = <com.gec.la: int aa_warning_lowbatteryalarmdescr> User's precise device location. This Proposition 2: Location data may b >sion Ny
= | |urcontext: app may collect, use, and share User be used to enhance safety features, ig(”:‘;[‘lg';‘- E“: EPP aceess v
5 . ’ 5 ' to enhance securi
"aa_warning_switchoffanchor": "Switch OFF Anchoring Mode" location Data in order to provide such as sharing live location with detecting unusual activity mseuyony
“aa_warning_title": "Anchor Alarm"” location-based services. support staff (conjecture). the user's location.
Privacy-Relevant Node Filter @ Subgraph G p ized Repr
itie Construction lated i
Ul-Fused Call Graph| | Critical Node Patterns Permission-Related Pert Related UCG 1zer General Node Summarized
{UcG) 1. Ul Entry Points Subgraphs Prompt Instruction Focus Across Node Types Subgraph _ | | Representation Example
; —_— n ic-Rich Privacy Shortest-path L 3¢ General Subgraph .l II.: dest?nbe displayed UI eIenﬁeths + related user data Proposiion deivu ouhnche alen:::og
D Proposition 11 Third-Party SDK relevant o search) [|#sProposition-specialized « Ill: iidentify SDK usage + permissions || specialized i V' ? y' ; N
8 b Yy nodes neo“é":zgiras 56 « IV: summarize functionality + privacy-related operations Soiar A cnt;c:l anchor aiarm r‘:ojndvmons,
= IV. Permission Access * V, VI: explain connections to privacy propositions imilar Apps | fincluding moving outside an
Similar Apps Info . . .) specialized | |allowed distance, poor GPS
I V. Proposition-Relevant « Other: briefly summarize implementation logic signal, and low battery.
l VI. Similar-App-Relevant,
Subgraphs Description Synthesizer - P
Summarized App Permission Description
Representations Agent 1: Agent 2: Agent 3: Aggregator Agent T
= s . o i o 4 . - TrackInfoActivity uses
Permission-Focused Analysis Policy Proposition Validation Similar-App-Inspired D s
SGEneraL « Input: General subgraph : . Input'};ropgilion—speciﬁc « Input: Sir:n‘l’ar—ap‘:) subgraph s . P t F fIndIIt!gS from 3 branches LOCATION data to provide
g 098 sumﬁa . subgr;aph summary + Propositions sumrr;ary + Similar apps info =r§umrgmaz§:,s;econcile, resolve metrics ,"ke ,SPeEd and altitude,
H Proposition | P || * F:'gi'r‘]“ E:r‘;‘:"é;iures usin « Prompt Focus: « Prompt Focus: conflicts supporting fitness and travel
'g Specialized permission 9 = Match code vs policy claims < Infer possible features « Distinguish core vs auxiliary tracking.
= — - Cite APIs, U, components * Detect gaps, extra or missing = Confirm, rule out, or discover functionalities - The app monitors movement from
= Similar Apps = Distinguish direct, inferred use behaviors new uses « Generate definitive user-facing anchor point and alerts users
specialized description N .
I I | 1 f f when exceeding safe distance.

Fig. 2: Example workflow of APPBDS on a real-world app com.gec.MarineApp

as UI contexts that would make the app’s functionality com-
prehensible to users. Therefore, APPBDS incorporates textual
information from GUI layout XML files to provide descriptive
insights into the app’s behaviors and their Ul contexts.

UCG Builder. This component enriches the ICCG with Ul

contexts by analyzing both activity-specific and general node
information. For activity nodes, which serve as fundamental
components for user interfaces, this component parses the
AndroidManifest.xml tO extract activities and identifies their
associated Ul layout files. For all nodes in the ICCG, this com-
ponent analyzes method bodies to extract Ul-related operations
and resource references, using pattern matching to identify
layout resource identifiers, string resources, and hardcoded
constants. The public.xml resource mapping file is utilized to
resolve resource identifiers to their actual definitions, estab-
lishing connections between code operations and UI elements.
The resulting UCG extends the original ICCG by associating
each node with relevant Ul context information, providing
a comprehensive view of how code logic and UI elements
interact, thus enabling downstream analysis of both calling
relationships and Ul-driven behaviors.
Permission Proposition Inference. Since privacy policies of-
ten contain irrelevant or potentially inaccurate information [9],
[22], APPBDS employs an LLM-based analysis to identify
permission-relevant segments within the policy and synthesize
them into structured Permission-Related Propositions ().
These propositions capture critical information and possible
usage scenarios for the target permission.

Each proposition serves as a directional statement that can
be independently verified against code evidence and similar
app behaviors. This proposition-based approach offers several
advantages: it distills complex and often verbose policy state-
ments into concise, analyzable claims; it allows for reasonable

inference beyond literal policy text to address incomplete
descriptions; and it provides specific, testable hypotheses that
guide subsequent evidence collection and validation in Phase
II’s Privacy-Relevant Node Filter and Phase III’s Policy Propo-
sition Validation during description synthesis. Additionally,
these propositions facilitate similar app retrieval from the PP-
KB by enabling semantic comparison of permission usage
patterns.

Similar App Retrieval. While Permission Proposition In-
ference extracts propositions from the target app’s PP, these
propositions may be limited by incomplete or low-quality
policy descriptions. To address this limitation, similar app
retrieval leverages information from similar apps to provide
diverse perspectives and potential functionality insights that
may not be explicitly documented in the target app’s PP.

PP-KB Construction. We collect thousands of popular apps
from Google Play [34] to construct a PP-KB. For each app
in the PP-KB, APPBDS performs a two-step process: first,
it extracts permission-related propositions using the same
analysis pipeline as Permission Proposition Inference; second,
it generates inferred permission descriptions by leveraging
web search capabilities to gather app-related documentation,
technical blogs, and functionality descriptions, then uses this
collected information to provide answers to the generated
propositions. This approach enables the creation of diverse
permission descriptions.

Similar App Retrieval Process. APPBDS identifies similar
apps from the PP-KB by computing cosine similarities be-
tween proposition embeddings. For each target app, APPBDS
computes embeddings for its propositions and compares them
with propositions from PP-KB apps sharing the same permis-
sion type. The overall similarity between apps is calculated by
averaging all proposition pair similarities, and the top-k£ most

similar apps are selected.

The retrieved similar apps contribute primarily through
functional diversity rather than strict similarity, providing
alternative implementation patterns, potential use cases, and
permission usage scenarios that inspire the identification of
implicit or undocumented functionalities in the target app. This
approach enables subsequent description synthesis to explore
broader functionality possibilities beyond the limitations of the
target app’s PP, prioritizing coverage and insight generation
over strict accuracy validation.

B. Phase II: Privacy-Relevant Node Filter and Summarization

This phase employs a Privacy-Relevant Node Filter to iden-

tify essential UCG nodes using six distinct patterns, constructs
three specialized subgraphs that capture different analytical
perspectives, and generates summarized representations to
facilitate subsequent LLM-based analysis.
Privacy-Relevant Node Filter. As shown in Figure (@),
APPBDS identifies privacy-relevant nodes from UCG using
six node patterns, each designed to capture specific types of
evidence crucial for permission-related behavior analysis:

Pattern I - UI Entry Points: UCG nodes representing activity
classes are crucial because they serve as user interaction entry
points and contain rich Ul semantics and business logic.
APPBDS locates these nodes by detecting activity-related
signatures and employs LLMs to determine their permission
relevance, prioritizing oncreate() methods that initialize Ul
components and house core functionality.

Pattern Il - Semantic-Rich Implementation: UCG nodes
associated with semantic resources (e.g., layouts, strings) often
represent dialogs or UI fragments. APPBDS assesses semantic
richness by examining resource references and calculating
weighted scores based on the diversity and specificity of Ul-
related content.

Pattern III - Third-Party SDK: Some UCG nodes utilize
third-party SDKs for functionality like advertising, analytics,
and social sharing. They provide valuable information due to
consistent naming patterns and comprehensive documentation.
APPBDS identifies these nodes using a curated mapping table
based on the Google Play SDK Index [33].

Pattern 1V - Permission Access: APPBDS maintains a
comprehensive list of permission-protected APIs to identify
method calls of permission-protected APIs within the UCG.

Pattern 'V - Proposition-Relevant: APPBDS uses
embedding-based similarity retrieval to identify nodes
whose functionality aligns with the permission-related
propositions extracted from the app’s PP, thereby enabling
evidence-based verification of policy statements.

Pattern VI - Similar-App-Relevant: APPBDS identifies
nodes that implement functionalities observed in similar apps,
leveraging this cross-app comparison to uncover potential un-
documented features or alternative implementation strategies.
Subgraph Construction. To facilitate downstream analysis,
APPBDS constructs three specialized subgraphs from the
identified privacy-relevant nodes (see Figure (@, @)):

The General Subgraph contains nodes from Patterns I-IV,
providing a comprehensive view of core permission-related

functionality independent of specific propositions or similar
app influences.

The Proposition-Specialized Subgraph extends the general
subgraph by incorporating Pattern V nodes, creating a targeted
representation for verifying specific claims made in the target
app’s PP.

The Similar-Apps-Specialized Subgraph extends the general
subgraph with Pattern VI nodes, enabling exploration of
potential functionalities inspired by similar app behaviors.

For each subgraph, APPBDS expands the identified nodes

into complete subgraph structures by employing a shortest-
path-based algorithm that preserves calling relationships. This
process identifies all paths between critical nodes using
Breadth-First Search (BFS), incorporates intermediate nodes
along these paths, and maintains original calling relationships
as edges, ensuring that the execution context and dependency
relationships are preserved for accurate behavioral understand-
ing.
Permission-Related UCG Summarizer (@). While sub-
graphs effectively capture privacy-relevant calling relation-
ships, they must be converted to text formats for LLM-based
analysis, given the limitations in handling complex graph
structures [36]], [37]. APPBDS employs LLMs to summarize
each node with specialized prompts tailored to different node
types.

For Ul-related nodes (Patterns I-II), the prompt emphasizes
extracting user-facing functionality descriptions, interface ele-
ments, and user interaction workflows. For SDK nodes (Pattern
III), the focus shifts to identifying specific third-party service
integrations and their privacy implications. For permission
access nodes (Pattern IV), the summarization concentrates
on direct API usage patterns and data access behaviors. For
proposition and similar-app relevant nodes (Patterns V-VI), the
prompts guide the analysis to explain connections to privacy
propositions and similar-app functionalities.

The resulting node summaries are concatenated to form
the summarized representation of each subgraph, providing
structured input for the subsequent description synthesis phase.

C. Phase IlI: Permission Description Synthesis

Phase III employs a parallel analysis architecture to gener-
ate comprehensive permission descriptions. As illustrated in
Figure (@), the Description Synthesizer consists of three
specialized LLM agents followed by an aggregator agent.

o Agent I - Permission-Focused Analysis: This agent processes
the general subgraph summary to identify core permis-
sion functionality patterns, focusing on distinguishing direct
versus inferred usage and determining primary functional
purposes.

e Agent 2 - Policy Proposition Validation: This agent com-
bines the proposition-specialized subgraph summary with
permission-related propositions to evaluate policy accuracy,
focusing on matching code behaviors against policy claims
and detecting gaps or inconsistencies.

o Agent 3 - Similar-App-Inspired Discovery: This agent
processes the similar-apps-specialized subgraph summary
alongside similar apps information to explore potential

undocumented functionalities, focusing on inferring pos-
sible features and discovering alternative implementation
approaches.

o Aggregator Agent: This agent integrates the findings from
all three agents, reconciling conflicts and identifying con-
sistent patterns to produce a coherent, evidence-grounded
description capturing both explicit and implicit permission
usage behaviors.

IV. EVALUATION

We evaluate the effectiveness of APPBDS on real-world
apps. Specifically, we aim to answer the following research
questions:

« RQ1: How effective is APPBDS in generating descriptions
for apps’ sensitive behaviors? How does APPBDS compare
with the existing work?

« RQ2: How well do the LLM-based evaluation metrics align
with human perception?

« RQ3: How effective are the processing mechanisms in each
phase of APPBDS?

« RQ4: How robust is APPBDS’s performance against code
obfuscation?

« RQS: What are the common errors in the generated descrip-
tions and what causes them?

A. Evaluation Setup

Evaluation Subject. We focus on seven key types of pri-
vate information that are protected by dangerous permis-
sions in Android system: CALENDAR, CAMERA, CONTACT,
LOCATION, MICROPHONE, SMS, and STORAGE. These dan-
gerous permission types all relate to user-sensitive data and
represent the main categories that protect user-understandable
sensitive information [38]], [39]], [11]], [40], [41]. We collected
real-world apps from Google Play [34] and AndroZoo [42] to
form our evaluation dataset. The criteria for selecting apps for
the evaluation dataset are as follows:

o Permission: We excluded apps if their requested permissions
do not belong to our focused permissions. This information
is derived from the app’s manifest file.

e Privacy Policy: As privacy policies are part of APPBDS’s
inputs and are required for manual inspection of privacy
usage, we excluded apps (1) that do not have privacy policies
or (2) whose privacy policies do not contain descriptions for
the requested permissions.

e App Description: As shown in prior research [8], [9], app
descriptions contain sentences that explain permission uses,
which is critical for our manual inspection of apps’ privacy
usage. Thus, we excluded apps if their app descriptions do
not contain sentences that explain the uses of the requested
permissions.

In total, we selected 270 apps for our evaluation, and data
distribution based on the types of requested permissions is
shown in Table [l The selected apps cover a wide range of
popularity, from apps with few downloads to top-downloaded
apps (Figure [3), ensuring that the dataset is representative and
reflective of real-world market distribution. For each app, we
also assign a PP quality rating (0-5) to indicate whether the

TABLE I: Test set and PP-KB data distribution

Permission | Test Set | PP-KB
CALENDAR 6 500
CAMERA 69 500
CONTACT 11 500
LOCATION 73 500
MICROPHONE 30 500
SMS 2 500
STORAGE 79 500
Total | 270 | 3500

App Count (bars)
PP Quality Rating (left y)
@~ N-Obf Rate (right y)

w
IS

@
N
I
IS

PP Quality Rating
g
o o
N w
N-Obf Rate

N

©
e
-

0.0

10+ 1K+ 10K+ 100K+ 1M+
Download Count buckets

10M+

Fig. 3: Privacy-policy quality and native obfuscation across
download count buckets. Bars show app counts in each
bucket; the green line (circles, left y) is the average PP
quality rating (0-5); the red line (diamonds, right y) is the
native-obfuscation (N-Obf) rate.

policy explicitly discloses the focused sensitive permission and
its concrete usage. The results show that many apps provide
low-quality or even missing PP. This motivates APPBDS ’s
design to leverage PP from apps with similar functionality to
enhance explanations of permission usage, as apps with similar
functionality and similar Uls tend to request same permissions
for similar purposes, such as camera for QR code scanning [9].
Reference Descriptions. Existing approaches [9], [8] typi-
cally rely on short sentences extracted from app descriptions
as ground truth, which are often brief and lack behavior
details. To ensure high quality, we constructed comprehen-
sive reference descriptions by systematically annotating full
app descriptions and privacy policies, supplemented by web
searches and hands-on testing when needed. Our annotators
were undergraduate students with substantial Android experi-
ence. Annotations were validated through a two-person review
with arbitration by the project lead. The annotator tutorial and
detailed results are available at our project website [30].
Constructing PP-KB. As shown in Table [l our PP-KB
contains 3,500 app samples across seven permission types,
with 500 apps per permission. We collected popular apps from
Google Play focusing on apps that request at least one target
permission. Unlike the evaluation dataset, we did not filter
PP-KB apps based on privacy policy or description quality.
The PP-KB uses LLM-generated descriptions that prioritize
coverage and diversity over strict accuracy.

Metrics. Traditional syntactic evaluation metrics, such as
BLEU [43] and ROUGE [44]], are not adequate for our
evaluations since they mainly measure lexical similarity. Given
that permission descriptions may be semantically equivalent
despite using different wordings, these metrics do not fully
align with our evaluation objectives [45]. To more effectively
assess the quality of APPBDS’s outputs in comparison to

reference descriptions, we define two types of evaluation
metrics: (1) semantic metrics, and (2) quality metrics.

o Semantic Metrics: We employ two semantic metrics. First,
we use BERT-Score[46|], which measures contextual em-
bedding similarity. Since BERT-Score treats all textual
content equally and does not prioritize permission-specific
information, we additionally employ LLMs for automated
evaluation of the generated descriptions. Recent studies have
shown LLMs to be effective for NLG evaluation [27]], [28]],
[29], allowing scalable evaluation without manual interven-
tion. To this end, we propose Semantic Relatedness, an
LLM-based metric that extracts permission-related semantic
key points from the reference descriptions and measures how
well the generated descriptions capture these key points. The
metric emphasizes the most functionally relevant aspects
of permission use. It employs a 0—10 scoring scale, where
LLMs first extract distinct functional aspects from the refer-
ence, then evaluate the degree of coverage (none/partial/full)
for each aspect. Scores are weighted by the complexity
and significance of each aspect, considering both semantic
equivalence and implementation details.

o Quality Metrics: We further employ two LLM-based metrics
(Richness and Specificity) to assess the information qual-
ity of the generated descriptions beyond simple reference
matching. While using reference descriptions as baseline
(scored as 7 out of 10), both metrics allow for content
variety beyond the reference. Richness evaluates the breadth
of information provided in the description, focusing on the
variety of aspects covered regardless of their strict alignment
with the reference. It measures how well the description
captures different dimensions of permission usage, such as
various features, scenarios, and implementation purposes.
The metric uses a 0-10 scale where O indicates lack of
functional diversity, 10 indicates comprehensive coverage
of permission-related functionalities, and reference descrip-
tions serve as the 7-point baseline. Specificity examines
the detail level of the provided information. It assesses
whether the description provides concrete implementation
details, precise feature explanations, and clear technical
mechanisms, rather than just high-level summaries. The
metric uses a 0-10 scale where O indicates lack of detailed
information, 10 indicates highly specific explanations for
each functionality, and reference descriptions serve as the
7-point baseline.

To ensure fair evaluation across all methods, we designed
a rigorous LLM-based refinement prompt to standardize all
generated descriptions before scoring. This prompt enforces
the removal of promotional or irrelevant content, constrains
responses to a concise 75-150 word range, and ensures in-
clusion of only permission-relevant, substantive functionality
details. This pre-evaluation step minimizes length-related bias
across LLM-generated outputs, directing the evaluation toward
content quality rather than superficial verbosity.

Manual Inspection. To further ensure the LLM’s auto-
evaluation provides accurate assessment, we conducted a man-
ual inspection of the generated descriptions. We recruited three

TABLE II: Overall evaluation results

Method | BERT-Score | Richness | Specificity | Semantic Rel.
DescribeCTX 0.717 1.03 1.29 0.82
DescribeCTXGpr.40 0.832 6.33 6.22 3.99
APPBDS with different LLMs

GPT-40 0.875 8.54 7.96 6.20
GPT-o0ss 120B 0.764 8.52 9.02 6.17
LLaMA-3.3 70B 0.801 8.43 7.31 6.32
LLaMA-4 Maverick 0.810 7.86 7.49 5.85
Qwen-3 32B 0.810 8.79 8.86 6.70
DeepSeek-v3 0.762 7.93 8.29 5.95

TABLE III: Privacy-relevant node filtering results

| UCG | General | Proposition-Spec. | Similar-Apps-Spec.
Nodes | 46,282 | 43 \ 29 \ 21

inspectors with backgrounds in mobile security and software
engineering. These inspectors used the same evaluation metrics
provided to the LLM as guiding criteria for manual scoring,
i.e., assessing the permission descriptions based on semantic
relatedness, and richness and specificity.

To assess alignment between human and LLM evaluation,
we calculated Pearson (r), Spearman (p), and Kendall’s Tau
(1) correlation coefficients. These complementary measures
evaluate the consistency between LLM automated evaluation
and human inspection. All coefficients range from -1 to 1,
where values closer to 1 indicate stronger positive correlation
(higher consistency between human and LLM judgments)
and values near 0 suggest no correlation. Correlation values
above 0.7 are generally considered strong, indicating reliable
alignment between automated and manual assessments.

Due to the non-trivial efforts in inspecting the outputs from
APPBDS and the baseline approaches, within our affordable
efforts, we randomly chose 50 samples from all seven permis-
sions to perform manual inspection. Among these 50 samples,
except for the SMS permission, which had only two samples,
we chose at least five samples from each permission.
Baseline Approaches. We selected two baseline approaches
to compare with APPBDS. The first baseline approach is
DescribeCTX [9], which is the state-of-the-art technique that
trains an encoder-decoder model to synthesize permission
descriptions for the requested permissions of apps. The sec-
ond baseline approach is DescribeCTXgpr.40, Which directly
prompts the GPT-40 model with the inputs used by De-
scribCTX. We compared with this baseline approach to assess
the pre-trained LLM’s inherent knowledge and capabilities in
synthesizing permission descriptions for the declared permis-
sions of apps.

Implementation Details. In our evaluations, the
default backend of APPBDS is GPT-4o0 [17]. We
also report results with five open-source backends:
GPT-oss 120B [47], LLaMA-3.3 70B [48], [49],
LLaMA-4 Maverick [50], Qwen-3 32B [51], and
DeepSeek-v3 [52]. For PP-KB construction, we use
llama—-3.l-sonar-small-128k-online 531,

[54] to search and collect app information for cost
effectiveness, and GPT-4o for proposition generations,
with text-embedding-3-small [55] as the 1536-d
embedding model.

In Similar App Retrieval, we set the number of retrieved
similar apps (k) to 4. In Privacy-Relevant Node Filter, re-

TABLE IV: Human inspection results and correlation with LLM evaluations

| Inspector 1 | Inspector 2 | Inspector 3 | LLM Evaluation
Metrics | DescribeCTX / DescribeCTXgpr.40 / APPBDS
Richness 2.06 5.74 7.96 2.16 7.40 8.22 3.12 6.62 8.16 1.00 6.49 8.44
Specificity 1.92 5.36 7.98 2.06 7.42 8.36 3.60 7.18 8.60 1.36 6.31 7.92
Semantic Rel. 2.06 4.80 6.68 2.04 7.30 8.28 4.22 7.82 8.70 1.02 4.35 6.04
| Correlations with LLM Evaluation Results (Pearson r / Spearman p / Kendall 7)
Richness 0.886 / 0.867 / 0.751 0.922 /0.829 / 0.717 0.913 /0.875/ 0.770 —/—/—
Specificity 0.871 / 0.854 / 0.721 0.890 / 0.782 / 0.649 0.887 / 0.807 / 0.688 —/—/—
Semantic Rel. 0.759 / 0.775 / 0.628 0.799 7 0.798 / 0.660 0.770 / 0.762 / 0.638 —/—/—

garding Android Protected API calls, we manually collected
49 unique permission-protected APIs related to our seven
focused permissions from the Android Developer website [S6],
[57] for API levels 21-34. Similarly, we collect 138 third-
party SDKs from Google Play SDK Index [35], a repository
that provides detailed information about SDKs commonly
used in Android applications. For evaluation, we employ the
deberta-xlarge-mnli model [58] to calculate BERT-
Score and utilize GPT—-40 [17] for all other LLM-based
metrics.

B. RQI: Effectiveness and Improvements

We compare APPBDS with two baselines: (1) De-
scribeCTX [9], a state-of-the-art encoder-decoder approach
for synthesizing descriptions of app permission uses, and
(2) DescribeCTXgpr.40, an enhanced version that replaces the
encoder-decoder model with an LLM. As shown in Table
APPBDS achieves the best results across all evaluation met-
rics. Compared to DescribeCTX, it improves BERT-Score
by 22.0% (0.875 vs. 0.717), and achieves even larger gains
in the LLM-based metrics. Compared to DescribeCTXgpr 40,
APPBDS shows consistent improvements, including a 5.2%
improvement in BERT-Score (0.875 vs. 0.832), a 34.9% im-
provement in Richness (8.54 vs. 6.33), a 28.0% improvement
in Specificity (7.96 vs. 6.22), and a 55.4% improvement in
Semantic Relatedness (6.20 vs. 3.99). These results demon-
strate that combining program analysis with LLMs produces
significantly better descriptions than either encoder—decoder
training or a straight-forward LLM baseline. The manual
inspection results in Table further support our findings.
All three human inspectors rated APPBDS significantly higher
than both baselines across all metrics, with particularly notable
superiority in Semantic Relatedness.

We further evaluate APPBDS’s effectiveness across a range
of open-source LLMs. The results show that all open source
LLMs achieve comparable results as GPT—4 0, with some open
source models leading on specific metrics, such as Qwen-3
32B for Richness and Semantic Relatedness. These outcomes
indicate that APPBDS ’s gains stem from the pipeline rather
than any single model, underscoring its model-agnostic de-
sign. We conducted human inspection on a stratified subset
covering all seven permissions and all five open-source LLM
backends. Inspectors judged the generated descriptions to be
of consistently high quality and aligned with the LLM-based
evaluation across all metrics.

Effectiveness of Privacy-Relevant Node Filter. Table
compares the number of nodes in the original UCG with

TABLE V: Results of ApPBDS and its ablation variants

Method | BERT-Score | Richness | Specificity | Semantic Rel.
APPBDS | 0875 | 854 | 79 | 620
APPBDSNoPatterns 0.856 7.70 6.80 4.28
APPBDSNoGen&Prop 0.809 7.38 7.31 4.92
APPBDSNoGen& Sim 0.834 721 7.04 4.63
APPBDSNOSim&pmp 0.839 8.60 8.20 6.14

those in the subgraphs generated after Privacy-Relevant Node
Filter. The initial UCGs contain an average of 46,282 nodes,
a scale beyond the processing capacity of even state-of-
the-art LLMs. After filtering, the general subgraph is re-
duced to 43 nodes, while proposition-specialized and similar-
apps-specialized subgraphs adding an average of 29 and 21
nodes, respectively. This step reduces information size by ap-
proximately 99.9% while preserving privacy-relevant content,
greatly facilitating subsequent analysis.

Effectiveness of PP-KB in Supporting APPBDS. We con-
ducted a targeted analysis comparing propositions generated
from two sources: (1) the app’s PP and (2) the information
retrieved from similar apps via the PP-KB. Our analysis of
the complete evaluation dataset (270 apps) revealed that, for
28 apps, information from similar apps provided coverage
of functionality that substantially exceeded the apps’ own
propositions, revealing critical functionality entirely missing
from the app’s own propositions. Moreover, in over 100 apps,
information from similar apps meaningfully supplemented
the original PP, adding context and specificity that improved
understanding of permission usage scenarios.

Case Study. Figure [] shows the reference description,
APPBDS’s outputs, and baselines’ outputs for a team com-
munication app, co.bonx.go, using the MICROPHONE
permission. As shown in the figure, APPBDS effectively
identifies two key functions described in the reference: voice
activity detection for hands-free operation (@J)) and real-time
group conversations (). Additionally, APPBDS identifies
a function not mentioned in the reference: “audio recording
during video capture” ({/1). By integrating these key points,
APPBDS accurately summarizes the app’s core functionality:
group talk and live casting, which we confirmed by checking
the app’s official website [S9]. For technical implementation
details (marked in red in the reference), APPBDS partially
addresses “testing audio input levels and managing earphone
functionality” (@§), but lacks depth regarding machine learning
for sound environment adaptation and dual-microphone noise
canceling technology (@). This limitation occurs because
evidence of these uncommon features is sparse across all
information sources.

AppID: co.bonx.go — Permission: MICROPHONE

facilitating real-time group conversations

‘when audio data is captured.”

“...Voice Activity Detectiono, which utilizes the microphone to detect when the user begins speaking, enabling hands-free operation
by transmitting voice data only during active speechc. This feature employs machine learning to adapt to the sound environment§%,

ensuring precise voice detection with minimal processing time. ... The Push-to-Talk functionality transforms the app into a walkie-talkie,
by efficiently capturing and transmitting voice data. ... The app implements dual-microphone

digital noise-cancelling technology@ to filter out background noise and enhance sound clarity...”

DescribeCTX
“external microphone support”)

“The app utilizes MICROPHONE data to record audio for the purpose of generating and displaying processed data as a spectrogram@
or analyzer view. ... The user interface supports this functionality with options to start and stop recording@, ensuring user control over

“The app’s MICROPHONE permissions are integral to its core functionalities, enabling voice recognition and multimedia recording. Users
can execute voice commands and perform searches hands-freeo... The app uses the microphone for testing audio input levels and managing

, allowing users to produce high-quality

multimedia content with synchronized audio. For real-time communication, the app utilizes the microphone to facilitate live discussions
within talk rooms).”

earphone functionalityo. Additionally, the app supports audio recording during video capture

Fig. 4: Case study

Examining the baselines’ outputs reveals their limitations.
With information from the privacy policy (mentioning “spec-
trogram or analyzer view” and “record audio for analysis
purposes”) and UI elements (“start recording stop return”),
DescribeCTX produces only a meaningless phrase (“external
microphone support”), failing to identify the core functions.
Meanwhile, DescribeCTXgpr4, focuses only on spectrogram
visualization (@) and recording controls (@) without discov-
ering the app’s core permission-related functions. These results
illustrate a common issue with baselines: when privacy poli-
cies are of poor quality or UI information is inadequate, they
either make unfounded speculations or miss core functions. In
contrast, APPBDS’s robust information retrieval capabilities
remain effective even with limited initial information, demon-
strating its significant advantages over the baselines.

C. RQ2: Human-LLM Evaluation Alignment

RQ2 assess the reliability of our LLM-based evaluation
metrics. This analysis is critical as recent work has shown
varying degrees of consistency between LLM evaluations and
human assessments [27]], [28]]. We calculated correlation coef-
ficients across the selected samples between human inspectors
and LLM metrics. For each inspector, we paired their ratings
with corresponding LLM scores for each metric (Richness,
Specificity, and Semantic Relatedness) across all approaches.
We computed three correlation coefficients: (1) Pearson corre-
lation coefficient (r) for measuring linear relationship strength,
(2) Spearman’s rank correlation (p) for measuring monotonic
relationship strength, and (3) Kendall’s Tau (7) for measuring
concordance between rankings.

Table [IV| presents both the inspection scores and the corre-
lation analysis results. The results demonstrate a strong align-
ment between human and LLM judgments in all metrics. First,
inspectors’ relative rankings consistently match LLM evalua-
tions, with APPBDS receiving the highest scores, followed by
DescribeCTXgpt1.4o and DescribeCTX. The correlation anal-

ysis shows that Pearson correlation coefficients range from
0.759 to 0.922, indicating strong positive correlations (values
above 0.7). Similarly, Spearman’s rank correlations range from
0.762 to 0.875, while Kendall’s Tau values fall between 0.628
and 0.770, both exceeding the 0.6 threshold for strong rank-
order correlations. The p-values for all coefficients are <
0.001, indicating strong statistical significance. The consis-
tently high correlations across different inspectors confirm that
our LLM-based metrics effectively serve as reliable proxies for
human judgment in assessing permission descriptions.

D. RQ3: Ablation Study

To evaluate the effectiveness of each component of our
pipeline, we designed several ablation settings by creating
variants of APPBDS, as shown in Table [V}

o APPBDSnopatterns: Replaces privacy-relevant node filter with
random node selection in Phase II, and replaces all sub-
graphs in Phase III with random subgraphs.

e APPBDSnoGengProp: Removes both Agent 1 Permission-
Focused Analysis and Agent 2 Policy Proposition Validation
in Phase III, utilizing only the similar apps’ information,
Agent 3 Similar-App-Inspired Discovery and Aggregator in
Phase III.

o APPBDSNoGen&sim: Removes both Agent 1 and Agent 3
in Phase III, utilizing only permission-related propositions,
Agent 2 and Aggregator in Phase III.

o APPBDSnosim&prop: Removes permission proposition infer-
ence and similar app retrieval, discarding their specialized
subgraphs and utilizing only the Agent 1 and Aggregator in
Phase III.

Our ablation study reveals key insights about APPBDS’s
component contributions. As shown in Table [V]
APPBDSNopaerns achieves the lowest scores in specificity
and semantic relatedness among all variants, with semantic
relatedness only slightly surpassing the DescribeCTXgpr40
baseline (4.28 vs 3.99). This occurs due to the sparse

distribution of relevant information within app code, making
random node selection likely to capture irrelevant or
insufficient permission-related details. APPBDSyoGen&Prop
focuses exclusively on discovering features mentioned in
similar apps, while APPBDSyNoGengsim prioritizes verifying
privacy policy claims. This narrow focus results in descriptions
lacking general and common functionality, reflected in their
lower semantic relatedness scores. While APPBDS attains the
highest BERT-score and semantic relatedness score across all
ablation settings, APPBDSnosim&prop €xhibits slightly higher
richness and specificity scores, with a semantic relatedness
score comparable to APPBDS. APPBDSyosim&prop Telies
solely on the general subgraph, which primarily identifies
directly observable permission-related functionality. Though
it generates rich and specific descriptions due to detailed
subgraph node evidence, it misses subtle or implicit
permission uses that are not immediately apparent from code
patterns alone.

To illustrate these differences, consider a taxi app using the
LOCATION permission. In this scenario, APPBDSnosim&prop
identifies direct location-related functions such as real-time
location tracking and address search capabilities, along with
evidence of Google location services integration. However, it
fails to capture the functional context of how these capabilities
integrate with the app’s purpose and user interactions. In
contrast, APPBDSyoGengprop and APPBDSyoGengsim comple-
ment these findings by accurately identifying driver-passenger
matching based on location, trip tracking visualization, fare
calculation, location-based service personalization, and dy-
namic Ul adjustments using location data. These insights
enrich the generated descriptions with valuable contextual
understanding.

These findings demonstrate that while general subgraph
analysis provides a strong foundation, the complete APPBDS
pipeline’s integration of privacy policy propositions and simi-
lar apps’ information along with specialized subgraphs yields
the most semantically accurate and comprehensive permis-
sion descriptions. The next section provides a detailed case
study, demonstrating how APPBDS effectively identifies core
permission-related functionalities and outperforms baseline
approaches in a real-world scenario.

E. RQ4: Robustness Against Code Obfuscation

To evaluate APPBDS’s robustness against code obfuscation,
we conducted two more empirical studies. First, we classified
apps in our 270-app test dataset based on their existing
obfuscation status by manually examining the decompiled
code signatures and method bodies to classify apps into two
categories: 86 natively obfuscated (N-Obf) apps where all
method names are obfuscated, and 184 natively clear (N-Clear)
apps that retain readable method names. Figure [3| shows the
classification results, indicating that popular apps in larger
download count buckets are more likely to employ method-
name obfuscation. We then compares APPBDS’s performance
on N-Obf apps and N-Clear apps, as shown in Table The
results confirm that APPBDS is largely unaffected by method-
name obfuscation: performance on N-Obf apps is only slightly

TABLE VI: Performance comparison between natively
obfuscated apps (N-Obf, n=86) and natively clear apps
(N-Clear, n=184).

Backend Model | BERT-Score | Richness | Specificity | Semantic Rel.
| N-Obf ~ N-Clear | N-Obf N-Clear | N-Obf ~N-Clear | N-Obf N-Clear
GPT-40 0.879 0.873 8.45 8.58 7.84 7.98 6.08 6.25
GPT-oss 120B 0.773 0.760 8.43 8.56 8.93 9.06 6.48 6.00
LLaMA-3.3 70B 0.805 0.810 8.30 8.49 7.13 7.39 6.21 6.37
LLaMA-4 Maverick 0.794 0.818 7.79 7.88 7.32 7.51 5.80 5.85
Qwen-3 32B 0.803 0.813 8.74 8.78 8.82 8.86 6.66 6.74
DeepSeek-v3 0.773 0.758 7.78 8.00 8.34 8.27 591 597
Average | 0804 0805 | 825 838 | 806 818 | 619 620

TABLE VII: Performance before and after applying Ob-
fuscapk tool (Raw vs E-Obf, n=131 successfully processed

apps).

Backend Model | BERT-Score | Richness | Specificity | Semantic Rel.

| B-Obf Raw | E-Obf Raw | E-Obf Raw | E-Obf Raw
GPT-40 0.853 0.868 8.37 8.61 7.44 7.99 4.79 6.25
GPT-o0ss 120B 0.768 0.763 8.23 8.44 9.02 9.01 4.63 6.07
LLaMA-3.3 70B 0.797 0.797 8.32 8.39 6.79 7.32 5.31 6.23
LLaMA-4 Maverick | 0.791 0.799 7.56 7.93 7.05 7.49 4.75 5.85
Qwen-3 32B 0.800 0.815 8.72 8.81 8.75 8.82 5.60 6.79
DeepSeek-v3 0.762 0.758 7.60 7.95 7.89 8.35 4.60 6.03

Average ‘ 0.795 0.800 ‘ 8.13 8.36 ‘ 7.82 8.16 ‘ 4.95 6.20

lower than on N-Clear apps, with consistent patterns across all
backends.

Second, we applied Obfuscapk [60], a widely used open-
source framework in Android security research, on the test
apps to assess the impact of aggressive obfuscation, Obfuscapk
decompiled each APK, applied class/method/field-renaming,
and then rebuilt, aligned, and re-signed the package. We
successfully obfuscated 131 out of 270 apps, enabling a
controlled comparison between the raw versions (Raw) and
their obfuscated counterparts (E-Obf). As shown in Table [VII}
APPBDS maintains robust performance on E-Obf apps for the
Richness and the Specificity scores (averagely <0.34 drops),
and exhibits slightly greater degradation for the Semantic Re-
latedness score (about 20% drops). The findings suggest that,
since most of APPBDS ’s information sources (e.g., frame-
work APIs, string resources, and PP) cannot be obfuscated,
they remain highly resilient to aggressive transformations; the
main impact of obfuscation lies in degrading the semantic
coherence of the generated descriptions. We further analyze
the impact of less common obfuscation schemes on APPBDS
’s components in Section

F. RQ5: Error Taxonomy and Analysis

We inspected the incorrect generated descriptions and iden-
tified four major types of errors produced by APPBDS: in-
completeness (Omission), imprecision (Generalization), minor
inaccuracies (Factual Detail Error), and direct factual opposi-
tion (Contradiction). Our analysis of 1,322 discrepancies in the
generated descriptions revealed that the predominant failure
patterns are Omission (790) and Generalization (496). Notably,
<3% of errors are more severe errors (15 for Factual Detail
Error and 21 for Contradiction), indicating the high factual
reliability of APPBDS. We then performed a root cause anal-
ysis on these errors and identified two major causes: evidence-
related (insufficient/ambiguous input) and synthesis-related
(overly cautious generalization). Results show that most errors
were caused by evidence-related issues, including omissions,

factual inaccuracies, contradictions, and a significant fraction
of generalization failures (~40%). Overly cautious general-
ization emerged as the second most common cause, often
reflecting the model’s attempt to navigate against unclear
evidence. Failures from unprompted model hallucination were
rare, confirming that our agent design effectively anchors the
model to available evidence. Thus, the primary challenge is
the completeness of the evidence collection pipeline, as the
synthesis component itself has proven highly robust against
generating ungrounded factual errors.

V. THREATS TO VALIDITY

Internal Validity. Our study faces potential internal threats
from three sources. First, subjective annotation biases could
affect reference descriptions. To mitigate this, we implemented
a dual-annotator validation process where initial descriptions
were cross-checked against multiple evidence sources, includ-
ing app functionality verification and official documentation.
Second, LLM generation randomness could lead to incon-
sistent outputs. We addressed this by applying systematic
normalization throughout the description generation process
to eliminate speculative content and maintain consistent output
quality. Third, manual inspection reliability might vary across
inspectors. We mitigated this by using standardized evalua-
tion prompts with explicitly defined dimensions and identical
metric prompts to ensure alignment between automated and
manual assessments. Additionally, we conducted inspections
following stratified sampling principles to ensure balanced
representation across permission types.

External Validity. The generalizability of our findings is
mainly limited by two factors. First, our selection of permis-
sions might not cover all possible use cases. We addressed
this by carefully selecting permissions based on their critical
relevance to user privacy and functional necessity, focusing on
widely recognized high-risk categories. Second, our evaluation
apps might not represent the entire app ecosystem. To miti-
gate this, we incorporated apps spanning multiple categories
from mainstream sources to reflect real-world app diversity,
prioritizing popular apps while maintaining broad functional
coverage. Our methodology is designed to be adaptable to
broader contexts, including additional permission types and
underrepresented app categories.

VI. DISCUSSION

Code Obfuscation. APPBDS is most vulnerable when ob-
fuscation removes or distorts static evidence required to build
and validate the UCG. High-risk schemes include (i) reflection
and dynamic loading that hide permission-protected API calls;
(ii) string/resource encryption that suppresses Ul and constant-
level cues; (iii) third-party SDK renaming that breaks SDK
identification; and (iv) heavy control-flow transformations that
degrade decompilation and graph construction. Mitigations in-
clude integrating de-obfuscation and reflection/JNI resolution
before Phase I [61]], [62], [63], introducing lightweight runtime
sampling to recover decrypted strings/UI texts, canonicaliz-
ing SDK fingerprints beyond package names, and enforcing
stricter evidence gating in the Aggregator.

PP-KB and Retrieval Mechanism. APPBDS’s similarity
measurement relies on proposition-level semantic similarity,
which may not capture functional similarity between apps
with similar policy language but different permission im-
plementations. Also, the current PP-KB (3,500 apps) may
not cover emerging app categories. In future work, we may
employ advanced similarity metrics that combine app metadata
and proposition embeddings, along with continuous PP-KB
expansion.

VII. RELATED WORK

App Permission Description Generation. Several approaches
extract explanatory sentences from app descriptions to explain
permission uses [8], [L1], though these typically fail to cover
all declared permissions. Other work [[14] employs behavior
description models for sensitive API call graphs, relying
solely on code without considering privacy policies or GUI
information. Similarly, some research [64] identifies sentences
describing types of information used in apps. Most closely re-
lated to our work, [9] generates permission descriptions using
similar input resources but employs an encoder-decoder model
limited by short token sequences. Our evaluation demonstrates
the superiority of LLMs over this approach.

Privacy Policy Analysis. Recent research leverages LLMs for
automated privacy policy analysis, with approaches for identi-
fying and classifying data practice disclosures [63] and privacy
policy text analysis[66]. APPBDS analyzes not only privacy
policies but also code information to generate functionality-
based descriptions for permission uses.

Permission Usage Analysis. Recent research such as [67]]
proposes dynamic analysis tools for tracking permission usage
behaviors and their contexts at runtime. Our work differs by
using static analysis tools to build a comprehensive permission
usage analysis model that combines code, UI, and policy
information.

Privacy Compliance Verification. Recent work examines
discrepancies between app behaviors and privacy disclosures,
with approaches like [68]] measuring non-compliance of Apple
Privacy Labels and [69] detecting inconsistencies between
privacy policies and labels. While these approaches focus
on verification and compliance checking, APPBDS aims to
generate natural language descriptions of permission uses that
can help improve transparency.

VIII. CONCLUSION

In this paper, we presented APPBDS, a novel approach
that integrates program analysis and LLMs to identify and
summarize privacy-related code elements and UI contexts,
generating detailed descriptions for apps’ permission uses.
In particular, APPBDS constructs UCGs that integrate Ul
contexts with code semantics, employs critical node patterns
to identify permission-related nodes, and leverages LLMs to
extract essential privacy propositions from privacy policies.
Additionally, APPBDS builds a PP-KB and identifies similar
apps to guide LLMs when faced with uninformative privacy
policies. We conducted extensive experiments on 270 real-
world apps to validate the effectiveness of our approach and
demonstrate its superiority over state-of-the-art techniques.

ACKNOWLEDGEMENT

Xusheng Xiao’s work is partially supported by the National
Science Foundation under the grants CCF-2318483.

[1]

[2]

[3]

[4

=

[6]

[7]

[8

[t}

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

B. Liu, H. Jin, and R. Govindan, “Medusa: A programming frame-
work for crowd-sensing applications,” in Proceedings of the Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2015, pp. 337-350.

X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, “IconIntent: Automatic
identification of sensitive ui widgets based on icon classification for
android apps,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2019.

S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu, , and J. Lu, “Deeplntent: Deep icon-behavior learning for
detecting intention-behavior discrepancy in mobile apps,” in Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), 2019.

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the IEEE Symposium on Security and
Privacy (S & P), 2012, pp. 95-109.

P. G. Kelley, J. Bresee, L. F. Cranor, and R. W. Reeder, “A “nutrition
label” for privacy,” in Proceedings of the Symposium on Usable Privacy
and Security (SOUPS), 2009.

P. G. Kelley, L. Cesca, J. Bresee, and L. F. Cranor, “Standardizing
privacy notices: an online study of the nutrition label approach,” in
Proceedings of the Conference on Human Factors in Computing Systems
(CHI), 2010.

Apple Inc., “Human Interface Guidelines: Requesting
Permission,” [Online]. Available: https://developer.apple.com/design/
human-interface-guidelines/ios/app-architecture/requesting- permission/,
accessed: Feb. 7, 2020.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: towards
automating risk assessment of mobile applications,” in Proceedings of
the USENIX Security Symposium (USENIX Security), 2013.

S. Yang, Y. Wang, Y. Yao, H. Wang, Y. F. Ye, and X. Xiao, “Describectx:
context-aware description synthesis for sensitive behaviors in mobile
apps,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2022.

X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, “A large-scale
empirical study on android runtime-permission rationale messages,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2018, pp. 137-146.

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014.

M. L. V. de Vanter, “The Documentary Structure of Source Code,”
Information & Software Technology, vol. 44, no. 13, 2002.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2010.

M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation
of security-centric descriptions for android apps,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are
we?” in Proceedings of the ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2018.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in Proceedings
of the ACM/IEEE International Conference on Software Engineering
(ICSE), 2019, pp. 795-806.

OpenAl, “GPT-40,” [Online]. Available:
hello-gpt-40/, 2024, accessed: 2024.
OpenAl J. Achiam, S. Adler et al., “GPT-4 technical report,” arXiv
preprint arXiv:2303.08774, 2024.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

https://openai.com/index/

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]
(35]

[36]

[37]

(38]

[39]

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning
in large language models,” in Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), 2022.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal et al.,
“Retrieval-augmented generation for knowledge-intensive nlp tasks,”
arXiv preprint arXiv:2005.11401, 2021.

B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “Policylint: Investigating internal privacy policy
contradictions on google play,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2019.

L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTa: detecting
inter-component privacy leaks in android apps,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2015.

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behavior under
contexts,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2015.

J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2014.

Y. Hu, H. Wang, T. Ji, X. Xiao, X. Luo, P. Gao, and Y. Guo, “Champ:
Characterizing undesired app behaviors from user comments based on
market policies,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2021.

Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, “G-eval: Nlg
evaluation using gpt-4 with better human alignment,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2023.

J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and
J. Zhou, “Is ChatGPT a good NLG evaluator? a preliminary study,”
in Proceedings of the New Frontiers in Summarization Workshop at
the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2023.

Y.-T. Lin and Y.-N. Chen, “LLM-eval: Unified multi-dimensional au-
tomatic evaluation for open-domain conversations with large language
models,” in Proceedings of the NLP for Conversational AI Workshop
(NLP4ConvAl) at the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2023.
“APPBDS project website,”
2025.

R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing java bytecode using the soot framework: Is
it feasible?” in Proceedings of the International Conference on Compiler
Construction (CC), 2000.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” in Proceedings of the ACM International Conference on
Programming Language and Design Implementation (PLDI), 2014.

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping in an-
droid with epicc: An essential step towards holistic security analysis,” in
Proceedings of the USENIX Conference on Security (USENIX Security),
2013.

Google, “Google Play Store,” [Online]. Available: https://play.google.
com/store?hl=en, 2024, accessed: 2024.

Google, “Google Play SDK Index,” [Online]. Available: https://play.
google.com/sdks| 2025, accessed: 2025.

Z. Chen, Z. Jiang, F. Yang, E. Cho, X. Fan, X. Huang, Y. Lu, and
A. Galstyan, “Graph meets LLM: A novel approach to collaborative
filtering for robust conversational understanding,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing:
Industry Track (EMNLP), 2023.

J. Huang, X. Zhang, Q. Mei, and J. Ma, “Can llms effectively
leverage graph structural information: When and why,” arXiv preprint
arXiv:2309.16595, 2023.

B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “UiRef:
Analysis of sensitive user inputs in android applications,” in Proceedings
of the ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec), 2017.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards

https://github.com/AppBDS/AppBDS|

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/AppBDS/AppBDS
https://play.google.com/store?hl=en
https://play.google.com/store?hl=en
https://play.google.com/sdks
https://play.google.com/sdks

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

automating risk assessment of mobile applications,” in Proceedings of
the USENIX Security Symposium (USENIX Security), 2013.

P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner,
and K. Beznosov, “The feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2017.

P. Wijesekera, J. Reardon, I. Reyes, L. Tsai, J.-W. Chen, N. Good,
D. Wagner, K. Beznosov, and S. Egelman, “Contextualizing privacy
decisions for better prediction (and protection),” in Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), 2018.
K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collect-
ing millions of android apps for the research community,” in Proceedings
of the International Conference on Mining Software Repositories (MSR),
2016.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL),
2002.

C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proceedings of the Text Summarization Branches Out Workshop at
the Annual Meeting of the Association for Computational Linguistics
(ACL), 2004.

A. B. Sai, A. K. Mohankumar, and M. M. Khapra, “A survey of
evaluation metrics used for nlg systems,” ACM Computing Surveys,
vol. 55, no. 2, pp. 26:1-26:39, 2022.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

OpenAl, “gpt-0ss-120b & gpt-0ss-20b model card,” arXiv preprint
arXiv:2508.10925, 2025.
Meta AI, “The llama
arXiv:2407.21783, 2024.
“Llama-3.3-70b-instruct,” Hugging Face, Meta AI, 2024, accessed:

3 herd of models,” arXiv preprint

2025-09-12. [Online]. Available: |https://huggingface.co/meta-llama/
Llama-3.3-70B-Instruct

“Llama-4-Maverick-17B-128E,” Hugging Face, Meta Al
2025. [Online]. Available: https://huggingface.co/meta-1lama/
Llama-4-Maverick-17B-128E

Qwen Team, “Qwen3 technical report,” arXiv preprint
arXiv:2505.09388, 2025.

DeepSeek-Al, “Deepseek-v3 technical report,” arXiv preprint

arXiv:2412.19437, 2024.

Meta, “Llama 3.1: Open Foundation and Fine-Tuned Chat Models,”
[Online]. Available: https://ai.meta.com/llama/, 2024, accessed: 2024.
Perplexity AI, “Llama 3.1 Sonar Small 128K Online,” [On-
line]. Available: https://www.perplexity.ai/, https://www.promptitude.io/
models/llama-3- 1-sonar-small-online, 2024, accessed: 2024.

OpenAl, “text-embedding-3-small,” [Online]. Available: https://openai.
com/index/new-embedding-models-and-api-updates/, 2024, accessed:
2024.

Google, “Android Developers,” [Online]. Available: https://developer.
android.com/, 2024, accessed: 2024.

Google, “Android Permission Groups,” [Online]. Available: https:
/ldeveloper.android.com/reference/android/Manifest.permission_group,
2024, accessed: 2024.

P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced
bert with disentangled attention,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

BONX Inc., “Features - bonx work,” 2024, accessed: 2024-03-08.
[Online]. Available: https://bonx.co/work/en/service/features/

S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk:
An open-source black-box obfuscation tool for android apps,”
SoftwareX, vol. 11, p. 100403, 2020. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S2352711019302791

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical deob-
fuscation of android applications,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.
G. You, G. Kim, S. Han, M. Park, and S.-J. Cho, “Deoptfuscator:
Defeating advanced control-flow obfuscation using android runtime
(ART),” IEEE Access, vol. 10, pp. 61426-61440, 2022.

S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
and K. Zhang, “Understanding android obfuscation techniques: A large-
scale investigation in the wild,” arXiv preprint arXiv:1801.01633, 2018.
B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck, B. Reaves, K. Singh,
and S. Egelman, “Actions speak louder than words: Entity-sensitive

[65]

[66]

[67]

[68]

[69]

privacy policy and data flow analysis with policheck,” in Proceedings
of the USENIX Security Symposium (USENIX Security), 2020.

D. Rodriguez, 1. Yang, J. M. Del Alamo, and N. Sadeh, “Large language
models: A new approach for privacy policy analysis at scale,” arXiv
preprint arXiv:2405.20900, 2024.

C. Tang, Z. Liu, C. Ma, Z. Wu, Y. Li, W. Liu, D. Zhu, Q. Li, X. Li,
T. Liu, and L. Fan, “Policygpt: Automated analysis of privacy policies
with large language models,” arXiv preprint arXiv:2309.10238, 2023.
M. Guerra, R. Milanese, R. Oliveto, and F. Fasano, “Rpcdroid: Runtime
identification of permission usage contexts in android applications,” in
Proceedings of the International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2023.

Y. Xiao, Z. Li, Y. Qin, X. Bai, J. Guan, X. Liao, and L. Xing, “Lalaine:
Measuring and characterizing non-compliance of apple privacy labels,”
in Proceedings of the USENIX Security Symposium (USENIX Security),
2023.

A. Jain, D. Rodriguez, J. M. Del Alamo, and N. Sadeh, “Atlas: Auto-
matically detecting discrepancies between privacy policies and privacy
labels,” arXiv preprint arXiv:2306.09247, 2023.

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E
https://ai.meta.com/llama/
https://www.perplexity.ai/
https://www.promptitude.io/models/llama-3-1-sonar-small-online
https://www.promptitude.io/models/llama-3-1-sonar-small-online
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/reference/android/Manifest.permission_group
https://developer.android.com/reference/android/Manifest.permission_group
https://bonx.co/work/en/service/features/
https://www.sciencedirect.com/science/article/pii/S2352711019302791
https://www.sciencedirect.com/science/article/pii/S2352711019302791

	Introduction
	Overview
	Example Workflow of AppBDS

	Approach
	Phase I: Multi-source Data Acquisition and Preparation
	Phase II: Privacy-Relevant Node Filter and Summarization
	Phase III: Permission Description Synthesis

	Evaluation
	Evaluation Setup
	RQ1: Effectiveness and Improvements
	RQ2: Human-LLM Evaluation Alignment
	RQ3: Ablation Study
	RQ4: Robustness Against Code Obfuscation
	RQ5: Error Taxonomy and Analysis

	Threats To Validity
	Discussion
	Related Work
	Conclusion
	References

