
What Did You Pack in My App?
A Systematic Analysis of Commercial Android Packers

Zikan Dong
Beijing University of Posts and

Telecommunications
Beijing, China

Hongxuan Liu∗
Peking University
Beijing, China

Liu Wang
Beijing University of Posts and

Telecommunications
Beijing, China

Xiapu Luo
The Hong Kong Polytechnic

University
Hong Kong, China

Yao Guo
Peking University
Beijing, China

Guoai Xu
Beijing University of Posts and

Telecommunications
Beijing, China

Xusheng Xiao
Case Western Reserve University

Cleveland, United States

Haoyu Wang†
School of CSE, Huazhong University

of Science and Technology
Wuhan, China

ABSTRACT

Commercial Android packers have been widely used by developers
as a way to protect their apps from being tampered with. However,
app packer is usually provided as an online service developed by
security vendors, and the packed apps are well protected. It is thus
hard to know what exactly is packed in the app, and few existing
studies in the community have systematically analyzed the behav-
iors of commercial app packers. In this paper, we propose PackDiff,
a dynamic analysis system to inspect the fine-grained behaviors of
commercial packers. By instrumenting the Android system, Pack-
Diff records the runtime behaviors of Android apps (e.g., Linux
system call invocations, Java API calls, Binder interactions, etc.),
which are further processed to pinpoint the additional sensitive
behaviors introduced by packers. By applying PackDiff to roughly
200 apps protected by seven commercial packers, we observe the
disappointing facts of existing commercial packers. Most app pack-
ers have introduced unnecessary behaviors (e.g., accessing sensitive
data), serious performance and compatibility issues, and they can
even be abused to create evasive malware and repackaged apps,
which contradicts with their design purposes.

CCS CONCEPTS

• Security and privacy → Software and application security; Soft-
ware security engineering.

∗Co-first author.
†Haoyu Wang is the corresponding author (haoyuwang@hust.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3558969

KEYWORDS

Commercial Android Packers, Dynamic Analysis, Privacy Leakage
ACM Reference Format:

Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu,
Xusheng Xiao, and Haoyu Wang. 2022. What Did You Pack in My App? A
Systematic Analysis of Commercial Android Packers. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’22), November 14–

18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3540250.3558969

1 INTRODUCTION

Android apps can be easily decompiled, hacked and repackaged by
adversaries. Thus repackaged apps and malware are long-lasting
issues in the mobile app ecosystem. These attacks pose a serious
hazard to both developers and users. To protect apps from being
hacked, many security vendors have introduced app security en-
hancement services, i.e., app packers, which usually apply encryp-
tion, obfuscation and other protections to prevent the app from
being analyzed by reverse engineering tools, e.g., Apktool [11] and
IDA [16]. Additionally, these services adopt runtime protection to
impede the dynamic analysis and unpacking of packed apps. When
a packed app is launched, the packers’ code will be executed be-
fore the other part of the code. In particular, the packer’s code will
first verify the integrity of the app and confirm the secure running
environment. Then the app’s code can be decrypted and executed.

To hide the technical details (i.e., protecting the packed apps from
being unpacked), the app packer is usually provided to developers
as a black box, i.e., in the form of an online service. Developers
upload apps to the Android packing service website, and the app
will be packed by the packing service in the background. After the
packing is completed, developers download the packed apps and
re-sign them. During the whole process, developers do not have
direct access to the Android packer, except the packed app. Thus,
developers have no way to know what the packing service pack in
their apps and what kinds of side effects (e.g., unexpected behaviors,
and performance issues) are introduced by the packing service.

1430

https://doi.org/10.1145/3540250.3558969
https://doi.org/10.1145/3540250.3558969
https://doi.org/10.1145/3540250.3558969
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3558969&domain=pdf&date_stamp=2022-11-09

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu, Xusheng Xiao, and Haoyu Wang

Indeed, there is increasing evidence that commercial packers can
introduce undesired behaviors to the original apps. For example,
it was reported that Qihoo packer once embedded advertisement
services in packed apps without the consent of app developers [7].

Besides unwanted side effects, app packers can be abused by
attackers. In particular, packing services have been exploited to
prevent malware from being analyzed, as shown in the recent works
on Android packers [25, 34, 37, 38]. To study the packed malware
and investigate their malicious behaviors, these works focus on how
to unpack the packed apps, i.e., extracting the original Dex files from
the packed app. Most of these works are based on dynamic analysis,
i.e., unpacking the app by modifying the Dalvik runtime [10] or
ART (Android Runtime) [37, 38] or relying on emulators [34]. With
the development of unpacking techniques, app packers also evolve
their packing services to impede these unpacking techniques. It’s
an arms race between packing and unpacking techniques.

To the best of our knowledge, while there exist studies on un-
packing the packed apps, few existing studies in the community
have systematically analyzed the behaviors of commercial app pack-
ers and their side effects. This, however, should be more transparent

to app developers, who definitely have the right to know what has

been packed in their own apps.

This Work. In this paper, we propose PackDiff, a compre-
hensive analysis system to inspect the fine-grained behaviors of
commercial app packers. By instrumenting the Android system,
PackDiff records the runtime behaviors of Android apps, including
Linux system call invocations, Java API calls, Binder interactions,
app component creation and thread activities. The instrumentation
is done via hooking the functions in the Linux Kernel, Android
Runtime and Android framework. As PackDiff works on the An-
droid system directly, app packers cannot easily detect the presence
of PackDiff during the execution of the app, and thus PackDiff
can bypass the runtime protection measures (e.g., sandbox or em-
ulator checking) of the packers. By comparing the app behaviors
before and after packing, we can accurately pinpoint the additional
behaviors introduced by app packers.

By applying PackDiff to 196 packaged apps protected by seven
commercial Android packers (15 packer versions in total), we show
that PackDiff can analyze the fine-grained behaviors of commercial
Android packers (RQ1), including sensitive data access, network
interactions, system information collection, additional created app
components (e.g., services), background resident executions, and
anti-dynamic analysis checks. We further show that the runtime
performance and the compatibility of original apps can be affected
by the commercial packers greatly (RQ2). Furthermore, we inves-
tigate whether the commercial packers can be easily abused by
adversaries. The result is disappointing: most commercial packers
can be abused to help create evasive malware and repackaged apps,
which suggests that existing security vendors do not have much
regulation on the proper usage of app packers (RQ3).

This paper makes the following major contributions:

• We proposed PackDiff, a dynamic analysis system to in-
spect the behaviors of Android packers comprehensively.
Taking advantage of system instrumentation, PackDiff can
bypass the runtime checking of packers and compare the
behavior difference between the packed app and the original

one. We have applied PackDiff to 196 apps protected by
seven commercial app packers and their historical versions,
and observe that most app packers have introduced unneces-
sary behaviors, including accessing sensitive data, collecting
device information and network interaction, etc.

• We measured the impact of Android packers on the runtime
performance and compatibility of apps. We show that the
average runtime performance overhead introduced by app
packers is 29% to 102% for the first start-up time and 3% to
44% for memory consumption. Worryingly, most packers
would introduce serious compatibility issues.

• We revealed the dark side of app packers that they can be
easily abused to help create and deliver evasive malware and
repackaged apps, which contradicts with its design purpose
(i.e., protecting apps from being hacked).

To boost further research, we release PackDiff [20] along with
dataset used in this paper to the research community.

2 BACKGROUND

2.1 Reverse Engineering of Android Apps

Android apps are built with Java and C/C++ native code. The code
is formed in the APK (Android application package) file structure
which is a self-signed app. The Dalvik bytecode can be easily stat-
ically restored to source code or equivalent expression using de-
compilers, such as baksmali [3], dex2jar [4] and Jadx [9]. For native
libraries written in C/C++ language, there are many existing ma-
ture static analysis tools for analyzing C/C++ binary files, including
capstone [2] and IDA [16],

Android apps can also be dynamically analyzed in many ways.
Linux provides the system call ptrace for dynamic tracking and
debugging process running in the system. By manually debugging
the app, the implementation of the app can be inspected. If only
a cursory examination of the app is required, method profiling or
inspection of certain function parameters and return values can be
implemented through dynamic binary instrumentation techniques,
such as Frida [5] and Xposed framework [6].

Therefore, taking advantage of existing app analysis techniques,
Android apps can be easily decompiled, analyzed, hacked, and
repackaged by adversaries.

2.2 Android App Packer

Due to the large amount of plagiarism and repackaging in the
Android ecosystem [28, 31], Android app packing technique was
introduced and Android packers were adopted by a large number
of developers as an effective means to protect their apps. In general,
the Android packers usually protect the apps from three aspects,
including improving the bar of static analysis, protecting apps at
runtime and preventing apps from being tampered with.

To impede static analysis, Android packers protect both Dex files
and so files. The original Dex files of the apps are usually protected
through encryption, dynamic releasing (i.e., dynamically releasing
the protected data into the memory for execution during the run-
time), dynamic modification (i.e., modifying Dex files in the memory
when the app is running), obfuscation, and reimplementing with
native code. Furthermore, some packers adopted virtual machine-
based protection techniques, which translate Dalvik bytecode to

1431

What Did You Pack in My App? A Systematic Analysis of Commercial Android Packers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

another customized type of bytecode and embed a customized vir-
tual machine to interpret them when the packed app runs on a
device. For so files, Android packers protect them using ELF file
packer or obfuscation tools like Obfuscator-LLVM [27].

To protect apps at runtime, Android packers first examine the
running environments to prevent the packed apps from running
on the emulator which is leveraged by many unpacking techniques
to carry out dynamic analysis, or environments with root privi-
leges. On the other hand, Android packers will check if the app is
being debugged or hooked by tools such as Frida [5] and Xposed
frameworks [6]. Additionally, Android packers usually occupy the
debugging interface or detect tool-specific features to protect Dex
files from being dumped from memory.

To prevent apps from being tampered with, Android packers
usually adopt file verificationmechanism. Android packers generate
a fingerprint for each code file, configuration file and resource file.
Then, they calculate the file fingerprint at application startup and
compare it with the original file fingerprint previously calculated.
If the two fingerprints match, the app continues to execute.

Android packers are widely adopted by existing apps, especially
malicious apps. Even some third-party markets require app develop-
ers to pack apps before they are published to the market [22]. Since
Android packers provide a lot of protection for apps and different
security vendors implement their commercial Android packers in
different ways, it is difficult to analyze the detailed behaviors of
packed apps directly using traditional app analysis techniques.

2.3 Android System

The Android system is a hierarchical structure that can be roughly
divided into the Linux kernel, hardware abstraction layer, Android
Runtime, native C/C++ libraries and Java API framework. Next, we
will introduce the parts that are relevant to our work.

The foundation of the Android platform is the Linux kernel.
The Android Runtime relies on the Linux kernel for underlying
functionalities such as threading, file management and low-level
memory management. The kernel provides functionalities for apps
through system calls. Each system call is assigned a unique system
call number and distributed to the corresponding handler according
to the system call number in the kernel.

Android Runtime consists of the ART runtime [12] and a set of
core runtime libraries. For devices running Android 5.0 or higher,
each app runs in its own process and with its own instance of the
ART runtime which is proposed to improve the performance of
the Android system. ART runtime introduces ahead-of-time (AOT)
compilation. When the app is installed, the Dex bytecode of the
app is compiled to native code, which results in an ELF-format oat
file. When the app is running, the generated oat file is loaded into
memory, and ART runtime can find the native code corresponding
to the method of any class, to execute according to the segment
information stored in the oat file. In addition, Android also includes
core runtime libraries that provide most of the functionalities of
the Java programming language, such as the “ojluni”, which stands
for OpenJDK, java.lang, java.util, java.net and java.io.

Java API framework provides the entire feature-set of the An-
droid OS through its APIs written in Java language. These APIs
form the building blocks that developers need to create Android

Table 1: An overview of system instrumentation

Collected Information Modified System Level Behavior

Java API call Android runtime Sensitive data access
Anti-dynamic analysis check

Binder interaction Android framework Sensitive data access

Linux system call invocation The Linux kernel
Internet interaction

System information collection
Anti-dynamic analysis check

Component creation Android framework Additional component creation
Thread activity Android framework Background resident execution

apps with rich features by simplifying the reuse of core, modular
system components and services, which include content providers,
view systems and many managers, such as the package manager,
location manager and telephony manager.

Android system services provide interfaces for apps to call their
functions. Since apps and system services run in different processes,
Android provides an inter-process communication mechanism, i.e.,
Binder, for apps to interact with both Java system services and
native system services.

3 OVERVIEW OF PACKDIFF

3.1 The Need of System Instrumentation

To perform a systematic investigation of Android packers, we focus
on six types of behaviors related to packers, including 1) sensitive
data access, 2) network interaction, 3) system information collection,
4) app component creation, 5) background resident execution and
6) anti-dynamic analysis check. These are all possible behaviors we
could enumerate to characterize the packers.

However, since commercial Android packers provide many pro-
tection measures to prevent apps from being analyzed, it is difficult
to investigate the behaviors of packed apps directly using existing
static or dynamic techniques [5, 6, 11, 16]. To bypass the protection
measures, we take advantage of system instrumentation to moni-
tor the runtime behaviors of packed apps. System instrumentation
technique refers to directly inserting our customized monitoring
code into the system, which allows us to monitor app behaviors
and is difficult for packers to detect.

Thus, we need to select the proper instrumentation points to
get a comprehensive analysis of the packers. First, the app obtains
sensitive data through specific Java APIs which need to interact
with system services through Binder and retrieve sensitive data.
Second, unlike sensitive data, some system information that is not
relevant to the user is stored in certain system files, and apps can
obtain system information by accessing these files. Third, apps
usually transfer data externally via files or networks, and there
are many ways to access files and networks either through Java or
native code. But whichever method is adopted, it will eventually be
processed by the kernel through system calls. Fourth, for additional
component creation and background resident execution, apps also
need to call related Java APIs. At last, security vendors can provide
different anti-dynamic analysis mechanisms, andmost of them need
to rely on specific APIs or system calls.

Therefore, through the recording of Java API invocation, Binder
interaction, Linux system call invocation, component creation and
thread activity, we can achieve the aforementioned analysis.

1432

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu, Xusheng Xiao, and Haoyu Wang

Original App

Packing Service
Website

Packed App

Android Runtime

The Linux Kernel

Android Frameworks

Core Library

Log of Packed App

Log of Original App

Log Processing

Android Packers Behavior

Device with PackDiff

Behavior
Comparison

Call Stack
Backtrace

Sensitive Data Access

Internet Interaction

System Info
Collection

Additional
Component Creation

Background Resident
Execution

Anti-dynamic
Analysis Check

Kernel Logging
Module

System Calls
Record

Sensitive API
Record

Java Logging
Module

ART

Java API Call

Component
Creation

Binder
Interaction

Thread
Activity

Figure 1: The overall architecture of PackDiff.

3.2 Overview

The overall architecture of PackDiff is shown in Figure 1. We
instrument the Linux kernel, Android runtime and Android frame-
works to collect information on Linux system call invocation, Java
API call, Binder interaction, component creation and thread activity.
We monitor the detailed runtime behaviors of the packed app and
the original one using PackDiff, and the generated log information
is processed for comparison in the log processing module. In this
way, we can accurately pinpoint the additional behaviors introduced
by packers. Table 1 summarizes our modifications to the Android
system, the collected information and the corresponding behaviors
we can infer.

4 THE DETAILS OF PACKDIFF

In this section, we depict each part of PackDiff in detail.

4.1 Linux Kernel Instrumentation

We aim to record all necessary system calls invoked by the app by
instrumenting the Linux kernel. To this end, we first need to iden-
tify the threads of the target app and only record the system calls
of the corresponding threads. When a system call is invoked by the
target app, PackDiff records the system call name, parameters and
return values. The parameters and return values can be leveraged
to capture the behaviors of the apps. In addition, we record the call
stack of each system call to distinguish the behaviors of Android
packers. During log processing, we use system call records to main-
tain the file descriptor table and memory mapping, supplement the
call stack and file-related behaviors of apps.

4.1.1 Flagging Target Threads. As many apps are running simulta-
neously in Android system, we flag the threads of the target app in
the Linux kernel to reduce performance overhead when it starts.
Our system instrumentation should only be activated for the flagged
threads. For this purpose, we customize a tag for the target threads
and obtain their records of system calls. In the Linux kernel, each
thread is represented as a task_struct structure, which provides
a member variable flags to tag the threads. This helps us identify
all threads of the target app by specifying the customized tag. After
the target app’s main thread is started, our customized tag would be

Table 2: The tag of parameters and return values

Type Description Resolve at Runtime Resolve in Log Processing
FD Identifier for a file

√

PID Process identifier
√

ADDR Memory mapped address
√

Path File path string
√ √

Data Structure parameters
√ √

ARGV Parameter list of execve
√ √

set in the task_struct structure through system call prctl, which
can manipulate various aspects of the behavior of the calling thread
and determine the action to be performed based on its option pa-
rameter. Specifically, we add a branch supported by the option
parameter, and use this branch to flag the main thread of the target
app and start tracing. After that, each time a thread is created by
system calls (e.g., fork), the entire task_struct structure is copied
and inherits our customized tag. As a result, all child threads are
flagged and traced by PackDiff.

4.1.2 Recording System Call Invocation. To record the invocation
of system calls, we leverage the debugging interface for system calls
provided by the kernel. The kernel relies on _TIF_SYSCALL_WORK
to determine which threads need to be debugged. When a thread’s
tag matches _TIF_SYSCALL_WORK, Linux kernel will call function
syscall_trace_enter and syscall_trace_exit before and after
the execution of system calls, respectively, and we can access the
information of the invoked system calls in both functions. Thus,
we set our customized tag to _TIF_SYSCALL_WORK to activate the
functions in the target thread and modify the functions to record
the invocation of system calls.

4.1.3 Resolving System Call Parameters. The parameters of some
system calls can provide useful information regarding the behaviors
of packed apps. Thus, we seek to resolve these parameters, e.g.,
mapping the file descriptor to the opened file name. We mainly
retrieve six types of parameters and return values, as shown in
Table 2. For the consideration of system performance, we put most
of the resolution in the log processing phase. Particularly, for some
parameters and return values of pointer type (i.e., Path, Data and
ARGV), it is necessary to parse the content at runtime.

For parameters of type FD (i.e., an identifier for a file), we need
to know the state of the file description table which records the
mapping between file descriptors and opened file names, when

1433

What Did You Pack in My App? A Systematic Analysis of Commercial Android Packers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

each system call is invoked. To eliminate potential performance
overhead, PackDiff records the initial state of the file descriptor
table at runtime and further maintains the table information in the
log processing phase after the test is completed. To be more specific,
if a system call is found to create a file descriptor, we add it to the
maintained file descriptor table; if the invoked system call is used
to release a file descriptor, we delete the corresponding item in the
table. By maintaining the file description table, we can know every
file that the app touches.

For parameters of type ADDR (i.e., memory mapped address),
memory mapping maintenance is completed similar to file descrip-
tor maintenance, in which the initial state is first recorded and we
continue to maintain during the log processing based on record of
system call mmap and munmap.

4.1.4 Log Call Stack. After retrieving the above system calls, Pack-
Diff uses the system call stack backtrace to determine whether a
system call is invoked by the packer. Using the address in each call
stack and maintained memory mapping, the invoker of the system
call can be obtained. For invocations of system calls that exist only
in the record of packed apps, we consider them to be behaviors
from the packer. To perform call stack backtrace in ARM archi-
tecture, the frame pointer needs to be activated during Android
building phase. Figure 2 illustrates the structure of the call stack in
32bit ARM architecture after the frame pointer is active. R7 register
stores the frame pointer, which points to the frame pointer of the
last stack, and the return address is stored in lr register.

lr
r7

……

lr
r7

……
Small Address

Big Address

Figure 2: The structure of call stack in 32bit ARM

During the system call stack backtrace, we determine if the
backtrace should be ended by checking whether the frame pointer
is still in the stack and whether the address pointed to by the frame
pointer is increasing.

4.1.5 Logging Module in the Linux Kernel. We next introduce the
logging module which records the logs from the kernel. In the
Linux kernel, the log messages are generally output by the function
printk. However, function printk does not support the output of
large amounts of logs. First, the max buffer size is limited to 2MB,
and anything over 2MB will overwrite the previous logs. Second,
when logs are output at a high frequency in a short period, part
of the logs will be discarded. Therefore, PackDiff implements an
additional logging module in the Linux kernel. As the size of logs
grows, the cache size is dynamically extended, and a new file where
the logs are output is added to the proc filesystem.

4.2 Android Runtime Instrumentation

To record Java APIs called by the app, we set instrumentation in
the ART runtime and core runtime libraries in Android Runtime.

4.2.1 ART Runtime. We instrument the entry point of the Java
API calls in ART runtime to record all Java APIs called by the
app. The ART runtime has two execution modes, one using the
interpreter to execute the Java code, and the other executing native
code generated by ahead-of-time compilation. There are two entry
points when ART runtime executes a Java method. When an app
calls a compiled Java method, ART runtime executes the method
throughmethod Artmethod::Invoke in art_method.cc. When an
app calls a method in Java code, ART runtime interprets the method
through function DoCall in interpreter_common.cc. Based on
the instrumentation, we can identify API calls related to sensitive
data access and anti-dynamic analysis.

4.2.2 Core Libraries. Tomonitor some specific behaviors of the app
(e.g., encryption and system command operation) in detail, we set
instrumentation in related runtime libraries. Android includes a set
of core runtime libraries that providemost of the functionalities that
the Java API frameworks use, including functions for encryption
and system command operation. We record the corresponding data
in these functions (e.g., invoked system commands).

Additionally, we implement a logging module within package
java.util to output information from core libraries and Android
frameworks, which enables code in core libraries and Android
frameworks to directly import the class of logging system.

4.3 Android Framework Instrumentation

We next instrument the Android frameworks to collect information
on Binder interaction, thread activity and component creation.

4.3.1 Binder. Since apps and system services run in separate pro-
cesses, Android provides Binder, an inter-process communication
mechanism, for apps to interact with system services. As shown
in Figure 3, Android frameworks use native library libbinder to
access Binder , and libbinder invokes ioctl to access the Linux
Kernel through /dev/binder. Finally, the Binder driver in the Linux
Kernel completes the interaction between apps and system services.

To record the behaviors of the app using Binder, we instrument
the library libbinder. We modify the method Bpbinder::tran-
sact, in which we can record the accessed system service, called
system function and the corresponding parameters.

Android App Android Service

BinderProxy BinderServiceManager

BpBinder BBinder

Binder Driver /dev/binder

ioctl ioctl

Android
Framework

Native

Kernel

Figure 3: The Binder architecture in Android

4.3.2 Thread. To analyze the thread activities and the background
resident execution behavior of apps, PackDiff monitors the cre-
ation and completion of threads. We record thread creation via the
instrumentation of Thread class. Android allows an app to start a
thread through a new instance of the Java class Thread and calling
method Thread.start. We record the ownership of new threads
in method Thread.start. The created thread will execute the code

1434

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu, Xusheng Xiao, and Haoyu Wang

in method Thread.run after it starts. In one case, the caller over-
rides method Thread.run. In the other case, a Runnable object is
passed to Thread constructors by the caller. So we record the actual
type of the class Thread in runtime and the type of the parameter
Runnable before the execution of the new thread starts.

To monitor the running threads, we add a timer in Android
frameworks, which starts after the app is launched, and invoke the
method Thread.getAllStackTraces every 10 seconds. When a
thread disappears from the running thread list, we consider the
thread finished. Furthermore, we can figure out the threads which
reside in the background for a long time.

4.3.3 Android App Components. PackDiff also monitors the be-
haviors related to app components. Android provides four differ-
ent types of app components, i.e., activity, service, broadcast re-
ceiver and content provider, which serve distinct purposes. Three
components in Android must be statically registered in the file
AndroidManifest.xml, while the broadcast receiver can be regis-
tered dynamically through the method Context.registerRecei-
ver. Thus, we instrument this method to capture the dynamic
registration of broadcast receiver.

4.3.4 App Launch Process. To start PackDiff’s monitoring of the
target app, we activate our instrumentation during the app launch
process which can be roughly divided into the following steps:
Step-1 The Zygote process creates an app process by executing fork

through function forkAndSpecialize.
Step-2 The new process initializes its environment and ART run-

time, and then executes the method ActivityThread.main.
Step-3 ActivityThread object performs Java-related initialization

and sends a message BIND_APPLICATION to the message
queue by calling method bindApplication.

Step-4 ActivityThread object processes the message through me-
thod handleBindApplication and completes the launch
process.

We determine whether the starting app is the target app accord-
ing to the package name information in forkAndSpecialize and
handleBindApplication function. We turn on the record switch
in the Linux Kernel through system call prctl after zygote exe-
cutes fork, and turn on the record switch for Android runtime and
Android framework in method handleBindApplication.

5 EVALUATION SETUP

5.1 Dataset

For a systematic evaluation of Android packers, we select seven
real world commercial Android packing services currently avail-
able for individual developers, including Baidu [13], Bangcle [14],
Ijiami [17], Qihoo [21], Naga [19], Manxi [18] and Tencent [23].
These are popular app packing services that serve millions of app
developers. As aforementioned, these app packers are black boxes,
and they can always be updated to deal with increasingly powerful
unpacking techniques over time. To investigate whether the behav-
iors of these commercial Android packers will also change over
time, we collect apps that are packed by historical versions of com-
mercial packing services from previous research [34, 36]. Besides, to
examine the service’s capability of inspecting the uploaded app, we
prepare some repackaged apps and malicious apps for evaluation.

Table 3: Summary of our dataset.

Android Packer Dataset2017 Dataset2020 Dataset2022 DatasetMix
Baidu_2017 10
Qihoo_2017 10
Baidu_2020 10
Bangcle_2020 10
Ijiami_2020 10
Qihoo_2020 10
Tencent_2020 10
Baidu_2022 20
Bangcle_2022 20
Ijiami_2022 20
Manxi_2022 20
Naga_2022 2
Qihoo_2022 20
Qihoo#_2022 4
Tencent_2022 20
Malicious app 15

Fake app 15
Total (Packed/Original) 20/10 50/10 126/20 30

Table 3 summarizes the datasets used in our experiments. In total,
we have compiled a list of 246 apps, including 196 packed apps,
20 original apps, and 30 apps used for evaluating whether these
commercial services can be abused by adversaries.

5.1.1 Dataset2017. We collect 10 apps from [34], each of which
was packed by two commercial packing services, i.e., Baidu and
Qihoo, in April 2017. Thus DataSet2017 has a total of 20 packed apps
protected by historical versions of packers, and 10 original apps.
It is worth noting that these 10 apps declare different permissions,
which will have a great impact on the behaviors of the packers, and
we further discuss this in detail in Section 6.

5.1.2 Dataset2020. We collect the same 10 apps as Dataset2017
from [36], each of which was packed by five commercial packing
services, including Baidu, Bangcle, Ijiami, Qihoo and Tencent, in
January 2020. Thus Dataset2020 has a total of 50 historical versions
of packed apps corresponding to the 10 original apps.

5.1.3 Dataset2022. Dataset2022 is created by interacting with the
latest packing services in April 2022, including all the seven acces-
sible packing services aforementioned. On the basis of the same
10 original apps as the first two sets, we collect another 10 open-
source apps from F-Droid [15], to expand the dataset. Then, we
seek to pack these apps using each of the packing services. As a
result, we successfully packed all the apps using six of them, ex-
cept for Naga where only 2 apps were successfully packed since
it allowed us to pack self-developed apps only. Besides, we notice
that Qihoo supports additional user-selected packing options (e.g.,
x86 platform support, signature verification, etc.), we thus tried to
check all the options to obtain an alternative version of the packing
service (marked as Qihoo#). However, some packing options re-
quire specific permissions declared by the app to take effect, which
prevents many apps from being packed in this way. At last, we
have 4 apps successfully packed in this way (i.e., by Qihoo#). As a
result, Dataset2022 consists of 126 versions of packed apps (from
20 original apps) in total using current packing services.

To distinguish between different versions of the packing services
for the same app, we mark the apps in Dataet2017, Dataset2020 and
Dataset2022 in the form of "packing service name_packing time",
like "Qihoo_2017", "Baidu_2020", "Manxi_2022".

1435

What Did You Pack in My App? A Systematic Analysis of Commercial Android Packers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

5.1.4 DatasetMix. To explore whether the commercial app packing
services can be abused by adversaries, we prepare a set of malicious
apps and fake apps that counterfeit well-known ones (e.g., fake
Facebook and WeChat apps), and intend to upload them to the
packing services and check whether these commercial services have
strict regulations on the uploaded apps, e.g., malware checking or
developer identify checking. Specifically, we collected 15 malicious
apps from 5 malware families in the most widely used MalGenome
dataset [39]. We collected 15 well-known apps from Google Play
and Baidu App markets, which were then resigned by us to create
some fake apps.

5.2 Research Questions

For a systematic summary of the commercial packing service, we
investigate three main research questions:
RQ1 What behaviors will the packing services add to the app?
RQ2 What side effects (e.g., performance and compatibility issues)

will the Android packers bring to the app?
RQ3 Do the packing services strictly inspect the app before they

pack the app?
To answer RQ1, we leverage PackDiff to analyze the behaviors

of packed apps in Dataset2017, Dataset2020 and Dataset2022, and
compare them with the behaviors of original apps to pinpoint the
difference. To answer RQ2, we test the impact of Android packers
on app performance through the comparison of the performance
difference between the original apps and the packed apps. For
compatibility comparison, we purchased commercial compatibility
tests on various kinds of real-world Android devices to aid our
study. To answer RQ3, We upload the malicious apps and fake apps
in DataseMix to the packing service website, and check whether
we can successfully pack them.

5.3 Experimental Environment

We conduct the experimentsmainly onAndroid 9.0.0 with PackDiff
and the Linux kernel version in Android is 3.18.100. Particularly,
due to the compatibility issue of apps in Dataset2017, we test these
apps on Android 7.1.0 with PackDiff. In addition, to maintain the
consistency of the experimental environment, all app performance
tests were conducted in the unmodified Android 7.1.0 on the same
smartphone. All the experiments are carried out on Google Pixel.

6 EVALUATION RESULTS

6.1 RQ1: Inserted Behaviors

Methodology. We apply PackDiff to test every packed app in
Dataset2017, Dataset2020 and Dataset2022, as well as their original
ones before packing, to make pairwise comparisons. The testing
process goes through five steps: 1) reboot the device and reset the
experimental environment; 2) install the app and grant all app re-
quested permissions; 3) activate monitoring of apps and start to
collect logs; 4) launch the app and perform the automated clicks
using automation testing tool uiautomator2 [8]; 5) after the au-
tomated test has lasted five minutes, we stop the testing. Finally,
we process the logs to analyze and compare the behaviors of each
app pair. Note that, for each app pair, we manually devise a testing
script to trigger the main functionalities of the app, which is used

in step 4. We next present our experimental results in terms of six
types of behaviors added by app packers.

6.1.1 Sensitive Data Access. As shown in Table 4, we observe that
some commercial packers show sensitive behaviors without con-
sent from app developers, including declaring new permissions,
dynamically checking permissions and calling sensitive APIs.
DeclaringAdditional Permissions.Android packers that provide
protections for apps such as encryption and verification, should be
able to complete without using any additional permissions. How-
ever, Baidu_2022 and Baidu_2020 add new permission declarations
to AndroidManifest.xml, including ACCESS_NETWORK_STATE,
INTERNET, READ_PHONE_STATE, ACCESS_WIFI_STATE, RE-
CEIVE_BOOT_COMPLETED, GET_TASKS and READ_EXTERN-
AL_STORAGE.With these permissions, Android packers can obtain
the user’s IMEI, phone number, SIM card information, IP address
and MAC address, etc., and leak sensitive data through the Internet.
These permissions are not necessary for the functionalities of pack-
ers, which should be more transparent to developers. Note that,
Qihoo packer explicitly declares that it needs apps with permissions
including ACCESS_NETWORK_STATE, READ_PHONE_STATE
and INTERNET, to make the additional function full-time crash
monitoring work. The permissions should be declared by develop-
ers, thus we do not regard it as additional permission declaring.
Dynamically Checking Permissions. Besides declaring new
permissions, some app packers can also make use of the permis-
sions requested by the app to collect sensitive data stealthily. In
general, the app packers first check whether the app has a cer-
tain granted permission at runtime. Our experimental results show
that Baidu_2020, Baidu_2022 and Qihoo_2017 performed dynamic
permission checks through related APIs. It is worth noting that
Qihoo_2017 does not add any new permission declarations, but
it checks for permissions when the app runs. If the app requests
some permissions and users grant them at runtime, Qihoo_2017
uses these permissions to perform the sensitive behaviors.
Calling Sensitive APIs. After the packed app has been granted
sensitive permissions, packers can use the permissions to access
the corresponding sensitive data. Our experimental results show
that Baidu_2020, Baidu_2022, Qihoo_2017, Qihoo#_2022 and Ten-
cent_2020 have additional sensitive API calling behaviors compared
with the original apps. Such sensitive behaviors include obtaining
IMEI, phone number and SIM card information, obtaining network
information, obtaining Wifi information, and obtaining location
information, which are not directly related to their main functionali-
ties. We further analyze the behaviors of the packers in the absence
of user interactions and demonstrate that there are no specific
trigger conditions for these sensitive behaviors.

6.1.2 Internet Interaction. We observe that some packers perform
additional network interaction behaviors. We query the destina-
tion IP address of their network connection from the log, and find
that Baidu_2020, Baidu_2022, Qihoo_2017, Qihoo#_2022 and Ten-
cent_2020 will frequently communicate with the server of the pack-
ing service provider. For example, through analyzing the behavior
logs of encryption-related APIs, we find that Baidu packer encrypts
and encodes the information including the device model, system
version, app version and device MAC address, and then transmits
it to the server belonging to Baidu.

1436

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu, Xusheng Xiao, and Haoyu Wang

Table 4: Summary of sensitive data access behavior of commercial Android packers

Android Packer Declaring New Permissions Dynamically Checking Permissions Calling Sensitive APIs
NETWORK WIFI BLUETOOTH INTERNET AUDIO_SETTINGS PHONE Telephony Wifi Connectivity Location

Baidu_2020
√ √ √ √ √ √

Baidu_2022
√ √ √ √

Qihoo_2017
√ √ √ √ √ √ √

Qihoo#_2022
√ √

Tencent_2020
√ √

Table 5: System information accessed by Android packers

File Path File Content Qihoo_2020 Qihoo_2022 Qihoo#_2022 Baidu_2022 Tencent_2020

/proc/cpuinfo Device CPU
Info

√

/proc/meminfo Device Memory
Info

√

/proc/version Linux Kernel
Compile Info

√

/proc/net/tcp TCP Connection
Info

√

/system/build.prop Android
Compile Info

√ √ √ √

6.1.3 System Information Collection. Android packers can obtain
Android device information by accessing system files, which con-
tain basic system information such as CPU and memory informa-
tion, Android version, Linux kernel version, etc. Table 5 shows the
system files accessed by Android packers, which are mainly used
to check whether the app is running on the emulator. Some sys-
tem information can also be obtained through external processes.
For example, Ijiami_2020 and Tencent_2020 get system properties
through command getprop while Baidu check whether SELinux is
enforced by command getenforce.

6.1.4 App Component Creation. We observe that some packers
created new app components, as listed in Table 6. By inspecting the
AndroidManifest.xml, we find that Baidu_2017, Baidu_2020, Qi-
hoo_2017 and Bangcle_2022 add new components to apps in the file.
Further, our instrumentation in method Context.registerRecei-
ver revealed that Baidu_2022, Qihoo_2022, Qihoo#_2022 and Ten-
cent_2020 create broadcast receiver dynamically and listen for sys-
tem event CONNECTIVITY_CHANGE, and Baidu_2020 registers
broadcast receiver for system event SCREEN_ON, SCREEN_OFF
and PACKAGE_REMOVED. These additional app components are
supposed to serve the packing functionality, but our system moni-
toring suggests that some of them are not quite related to the pack-
ing function. Taking broadcast receiver as an example, monitoring
system events like CONNECTIVITY_CHANGE and SCREEN_ON,
is obviously not a necessary behavior for app packing.

Table 6: Android components added by Android packers

Activity Service Content Provider Broadcast Receiver
Baidu_2017

√

Baidu_2020
√ √ √ √

Baidu_2022
√

Bangcle_2022
√

Qihoo_2017
√ √ √ √

Qihoo_2022
√

Qihoo#_2022
√

Tencent_2020
√

6.1.5 Background Resident Execution. Some Android packers show
background resident execution behavior. By tracing the thread
operation, we find that Baidu_2022, Baidu_2020 and Tencent_2020
create additional threads and keep running in the background after
the app is launched. These packers interact with their servers in
separate threads. In addition, Bangcle_2022 and Tencent_2020 also

create new threads where they detect if some important files (e.g.,
the app’s internal storage directory and ANR (Application Not
Responding) trace file directory) are modified during app running.

6.1.6 Anti-dynamic Analysis Checking. To prevent the app from
being dynamically analyzed, the packers perform a set of anti-
dynamic analysis checking to protect the app, and the results are
shown in Table 7. PackDiff can detect the security checks that
depend on the access to key functions or files, including:

1) Detecting Java debugging through Java API
Debug.isDebuggerConnected.

2) Detecting whether the key file has been read, modified or
created via the system call inotify.

3) Detecting manual debugging by calculating execution time
using system call clock_gettime.

4) Detecting ptrace debugging by checking the tracePid field
in /proc/PID/status.

5) Determining if the app is running in an emulator through
checking for the existence of virtual machine-specific files,
like /dev/qemu_pipe.

6) Determining if the app is running in the device with root
privilege through checking for the existence of feature files,
like /system/bin/su.

Table 7: Anti-dynamic analysis methods used by packers

Detect JDB
Debugger

Calculate
Execution
Time

Protect
File

Detecting
Emulator

Detecting
ptrace

Detecting
Root

Baidu_2017
√

Baidu_2020
√

Baidu_2022
√

Bangcle_2020
√

Bangcle_2022
√

Ijiami_2020
√ √ √

Ijiami_2022
√ √

Manxi_2022
√ √ √ √

Naga_2022
√ √ √

Qihoo_2022
√ √ √

Qihoo#_2022
√ √ √

Tencent_2020
√ √

6.1.7 The Evolution of Android Packers Behaviors. By comparing
the behaviors of Android packers with multiple versions (i.e., ver-
sions 2017, 2020 and 2022), we can see that the inserted irrelevant be-
haviors from the packing services are gradually decreasing. Among
the latest packing services, only Baidu still accesses sensitive data
without the developer’s knowledge.

Answer to RQ1: Experimental results show that PackDiff can

effectively analyze the behaviors of packed apps. We observe that

some commercial packers would involve behaviors that are un-

necessary to their main functionalities, e.g., collecting sensitive

information. These behaviors, however, should be more transpar-

ent to developers who use these services to pack their own apps.

1437

What Did You Pack in My App? A Systematic Analysis of Commercial Android Packers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

6.2 RQ2: Side Effects

Methodology.We analyze the side effects introduced by Android
packers by comparing each app pair (i.e., the packed app and the
original one), in terms of performance and compatibility. For each
tested app, we start and stop the app 5 times continuously after in-
stallation on the same device with unmodified system1, and record
the first start-up time, average start-up time and memory consump-
tion through ActivityManager and dumpsys tools.

In addition, we purchased an app compatibility testing service
with various kinds of real Android devices to evaluate app com-
patibility. We choose WeTest [24], which is a popular app testing
platform that helps developers identify compatibility issues such
as installation failure, crashes, and app not responding issues using
dynamic analysis on real devices. It costs about $360 for 1,000 com-
patibility tests (i.e., testing one app on one specific device is a test).
Note that, due to financial constraints, we were not able to test all
the packed apps on all kinds of devices. Thus, we selected 100 apps
from our dataset, which contain all packing service versions we
considered, and the testing devices covered the major smartphone
manufacturers and all system versions from the minimum sup-
ported Android version to Android 12. This comprehensive testing
enables us to study the compatibility issues introduced by packers.

Ori
gin

al

Bai
du_

201
7

Qih
oo_

201
7

Bai
du_

202
0

Ban
gcl

e_2
020

Ijia
mi_20

20

Qih
oo_

202
0

Ten
cen

t_2
020

Bai
du_

202
2

Ban
gcl

e_2
022

Ijia
mi_20

22

Ma
nxi

_20
22

Qih
oo_

202
2

Ten
cen

t_2
022

0

200

400

600

800

1000

1200

1400

1600

St
ar

t-u
p

Ti
m

e
(m

s)

First Time Non-first Time

Figure 4: An analysis of the Start-up time.

6.2.1 The Impact on App Performance. We analyze the impact of
packers on app performance from two aspects: start-up time and
memory consumption. Since packers need to perform protection
measures when app starts, it inevitably takes longer time for start-
up than the original app, and consumes more hardware resources.
Start-up Time. Figure 4 shows the average start-up time and first

start-up time of packed apps and original apps (the first column).
App packers can introduce significant performance overhead. The
overhead of average start-up time ranges from 22% to 76%, and the
overhead of first start-up time ranges from 22% to 102%. Among
all the packing services, Qihoo_2017, Ijiami_2020 and Ijiami_2022
are the ones that introduce the largest startup time overhead. More
specifically, the average start-up time of original apps is 303ms,
while the average start-up time of Qihoo_2017, Ijiami_2020 and
Ijiami_2022 are 532ms, 461ms and 458ms respectively. Qihoo_2017

1The unmodified system refers to the original Android system without PackDiff, in
order to prevent our modifications to the system from compromising performance of
the app.

Table 8: Compatibility issues caused by Android packers

Packer Version 5 6 7 8 9 10 11 12
Baidu_2017 • • • • •
Qihoo_2017 • • • • •
Ijiami_2020 • •
Bangcle_2020 ◦ ◦
Tencent_2020 • •
Baidu_2022 △ △ △ △ △ △ △ △
Naga_2022 □
Manxi_2022 ◦

Notes : • stands for All packed apps crash, ◦ stands for part of packed
apps crash, □ stands for part of packed apps are not responding, △
stands for part of packed apps fail to install.

performs a lot of file operations during the app startup, and Ijiami
performs a lot of stringmanipulation and file operations, whichmay
be the reason for the slow start of the packed apps. It is worth noting
that for all packing services except Ijiami_2020 and Ijiami_2022, the
non-first start-up time is significantly shorter than the first start-up
time. The reasons might be that there are some one-time operations,
and they further perform caching operations for speeding up.
Memory Consumption. The average memory consumption over-
head introduced by packers ranges from 3% to 44%. Qihoo_2017
(38%) and Baidu_2020 (44%) introduced the largest overhead while
Tencent showed the least impact on memory usage (3%).

6.2.2 The Impact on App Compatibility. To our surprise, most of
app packers would introduce compatibility issues, as shown in Table
8. It is worth noting that all original apps were able to pass the
compatibility tests. We can understand that historical versions of
packing services are prone to have compatibility issues, as they did
not consider the newer Android versions by design. However, we
observe that the latest versions of Baidu, Naga and Manxi packers,
can also cause serious compatibility issues. For example, an app
(mobi.maptrek) cannot be installed on any Android versions after it
was packed by Baidu, a self-developed app (com.rampage.complex)
packed by Naga have no responding issue that we can not access
its main UI, and a game app (app.crossword.yourealwaysbe.forkyz)
packed by Manxi has been found crash issues on Android 11.

Answer to RQ2: Unfortunately, most of the commercial packers

would introduce serious performance overhead and compatibility

issues to the original apps. Even the latest versions of app packers

can cause issues including failing to install, app crash, etc. App

developers should pay special attention to such issues when they

are using these commercial packers. Sadly, these issues might be

hard for developers to fix.

6.3 RQ3: Abusing of App Packers

Methodology. As aforementioned, we aim to investigate whether
app packers can be used to facilitate the creation of evasivemalware
and repackaged apps, i.e., whether they will check the submitted
apps. Note that, we only test five commercial packers in this ex-
periment, due to the limitation of Naga and Manxi packers, i.e.,
strict manual inspection and restricted usage times, thus we did
not include Naga and Manxi in this experiment.
Result. Disappointingly, we find that most services do not have
strict inspections on user-uploaded apps, which helps the spread of
repackaged apps and malicious apps.

1438

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zikan Dong, Hongxuan Liu, Liu Wang, Xiapu Luo, Yao Guo, Guoai Xu, Xusheng Xiao, and Haoyu Wang

Table 9: Evaluation results of packingmalware and fake apps

Baidu Qihoo Ijiami Tencent Bangcle
Malware • • ◦
Fake app • • ◦ ◦ •

Notes : • all apps can be packed, ◦ part of apps can be packed.

For the 15 selected malware samples, all of them can be success-
fully packed using Baidu and Ijiami packers without showing any
warning messages. As a comparison, Qihoo and Tencent can detect
the presence of security risks in malware and refuse to pack all
the malware samples. As to Bangcle, we can successfully pack 13
malware samples. It suggests that Baidu and Ijiami packing services
did not perform any security checks on the submitted apps, while
Qihoo and Tencent have the strongest security checking ability.

As to the fake apps resigned from well-known ones, Baidu, Qi-
hoo and Bangcle did not show any warning and the apps can be
successfully packed. Ijiami and Tencent can identify a part of them
and refuse to pack the apps with messages like "The app is not de-
veloped by the user". It suggests that Ijiami and Tencent may have
maintained a database of well-known apps and their corresponding
developer signatures, and they will check the authorship of the
submitted “well-known” apps.

Answer to RQ3: Our exploration suggests that these commercial

packing services can be indeed abused by adversaries to create

evasive malware or repackaged apps.

7 DISCUSSION

Implications. All the seven commercial packers we studied in
this paper are widely used services adopted by millions of apps.
However, we have revealed the disappointing facts that they would
introduce serious issues regarding user privacy, app performance
and compatibility issues, and even can boost the creation of mal-
ware. All of these commercial packers are designed by security
vendors, we argue that they should pay more attention to issues
about user privacy, service side effects, and service regulation. Fur-
ther, for the unsuspecting app developers who have adopted app
packers in their apps, they should pay special attention to the po-
tential side effects the packers introduced, and seek measures to
eliminate the impacts. Third, for security researchers, we believe
there is much room for analyzing and optimizing existing mobile
app services including app packers and other app enhancement
services. As a result, we will release all the artifacts used in this
paper to the research community.
Limitations. Despite the encouraging contributions, this work has
three limitations. First, PackDiff can only be deployed on the AOSP
system and Google supported devices. Through system instrumen-
tation, we can easily bypass the detection provided by Android
packers and record the information we need. However, implemen-
tation based on the system instrumentation can also be undesirable.
For example, We cannot make modifications to customized Android
OS without open source code. Thus we cannot deploy PackDiff
to devices that are not supported by AOSP. Second, PackDiff can
only record the app’s invocation behaviors, but cannot analyze the
execution flow inside the function. For example, after the Android
packers obtain the private data, the transfer process of the private
data within the process cannot be recorded by PackDiff. Third, due

to the limited financial budget, we only focus on free versions of the
commercial packing services. We will try to analyze the behaviors
of the paid versions of the packing services in the future.

8 RELATEDWORK

Android Unpacking. Android unpacking techniques have at-
tracted the attention ofmany researchers[25, 33]. If Android packers
can be cracked and the Dex files are extracted from the packed app,
the original app can be further analyzed using existing static analy-
sis tools. Kisskiss [1] attached the app process using ptrace, and
searched for Dex files or ODex file header tags in the memory of the
packed app process. Then Kisskiss dumped the Dex bytecode from
memory. Dexhunter [38] modified both ART and Dalvik virtual
machine, read the temp path of Dex files from the virtual machine
throughmethod hookwhen the packers call the corresponding APIs
to load the decrypted Dex code into the virtual machine. Similar to
us, DroidUnpack [25] is an Android packing analysis framework
based on a whole-system emulation. DroidUnpack mainly focuses
on packing-related behaviors, while our work focuses more on the
unnecessary behaviors introduced by Android packers and their
side effects. In addition, DroidUnpack relies on emulators, which
are easily detected. PackDiff is an on-device system and is more
invisible to packers.
System Modifications. There are many studies [30, 35–37] that
adopt a systemmodification approach. Modifying the system allows
researchers to operate at the low level of the system. TaintDroid
[26] implemented a dynamic taint analysis framework bymodifying
the data structure of the Dalvik virtual machine and adding its taint
markers. The flow of private data can be tracked at multi-levels,
and thus behaviors that leak private data can be found. VPDroid
[29] implemented a transparent Android OS level virtualization
platform tailored for security testing based on a customized Android
system. It allowed security analysts to customize different device
artifacts in a virtual phone without user-level API hooking. Toller
[32] implemented a tool to provide efficient infrastructure support
for UI Hierarchy Capturing and UI Event Execution to Android UI
testing tools based on modifications of Android frameworks.

9 CONCLUSION

In this paper, we perform a systematic study of commercial An-
droid packers. By instrumenting Android system, we implement
PackDiff, a dynamic monitoring framework for app packer analy-
sis. We design a series of experiments to investigate the behaviors
and side-effects introduced by app packers, and reveal a number of
disappointing facts. We advocate the community to pay more atten-
tion to app packers, and the Android packing services should insert
as few unnecessary behaviors as possible to protect users’ privacy,
reduce the negative impact on apps, and enforce regulations on the
proper usage of app packers.

ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Sci-
ence Foundation of China (grants No.62072046, No.61873069), the
Fundamental Research Funds for the Central Universities (HUST
3004129109), and Hong Kong RGC Projects (No. PolyU15219319,
PolyU15222320, PolyU15224121)

1439

What Did You Pack in My App? A Systematic Analysis of Commercial Android Packers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES

[1] 2014. Kisskiss: Android Unpacker presented at Defcon 22: Android Hacker
Protection Level 0. https://github.com/strazzere/android-unpacker.

[2] 2014. The Ultimate Disassembly Framework – Capstone. https://www.capstone-
engine.org/.

[3] 2015. baksmali: an disassembler for the dex format used by dalvik. https://github.
com/JesusFreke/smali.

[4] 2015. dex2jar: Tools to work with android .dex and java .class files. https:
//github.com/pxb1988/dex2jar.

[5] 2016. Frida: A world-class dynamic instrumentation framework. https://frida.re/.
[6] 2016. Xposed: a framework for modules that can change the behavior of the

system and apps without touching any APKs. https://repo.xposed.info/module/
de.robv.android.xposed.installer.

[7] 2017. Qihoo packing service embeds charging advertisements for third-party
applications. https://www.zhihu.com/question/55519031?sort=created.

[8] 2018. uiautomator2 - A library provided by Google for Android automated testing.
https://github.com/openatx/uiautomator2.

[9] 2019. Jadx: Dex to Java decompiler. https://github.com/skylot/jadx.
[10] 2020. Android Runtime (ART) and Dalvik. https://source.android.com/devices/

tech/dalvik.
[11] 2022. ApkTool:A tool for reverse engineering Android apk files. https:

//ibotpeaches.github.io/Apktool/.
[12] 2022. ART runtime. https://source.android.com/docs/core/dalvik.
[13] 2022. Baidu Inc. https://app.baidu.com.
[14] 2022. Bangcle Inc. https://www.bangcle.com/.
[15] 2022. F-Droid - Free and Open Source Android App Repository. https://f-

droid.org/.
[16] 2022. IDA:State-of-the-art binary code analysis tools. https://hex-rays.com/.
[17] 2022. Ijiami Inc. http://www.ijiami.cn/.
[18] 2022. Manxi Inc. https://www.manxi-inc.com/.
[19] 2022. NAGA IN Inc. http://www.nagain.com/.
[20] 2022. PackDiff. https://github.com/PackDiff/PackDiff.
[21] 2022. Qihoo360 Inc. https://dev.360.cn/.
[22] 2022. Summary of App Upload App Market Issues. https://wenku.baidu.com/

view/4bc04063cb50ad02de80d4d8d15abe23482f03db.html.
[23] 2022. Tencent Inc. https://cloud.tencent.com/.
[24] 2022. WeTest - one-stop quality open platform officially produced by Tencent.

https://wetest.qq.com/.
[25] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin

Li, XueqiangWang, and XiaoFengWang. 2018. Things You May Not Know About
Android (Un) Packers: A Systematic Study based on Whole-System Emulation..
In NDSS.

[26] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring

on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[27] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-
LLVM – Software Protection for the Masses. In Proceedings of the IEEE/ACM 1st

International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,

2015, Brecht Wyseur (Ed.). IEEE, 3–9. https://doi.org/10.1109/SPRO.2015.10
[28] Kobra Khanmohammadi, Neda Ebrahimi, Abdelwahab Hamou-Lhadj, and

Raphaël Khoury. 2019. Empirical study of android repackaged applications.
Empirical Software Engineering 24, 6 (2019), 3587–3629.

[29] Wenna Song, Jiang Ming, Lin Jiang, Han Yan, Yi Xiang, Yuan Chen, Jianming
Fu, and Guojun Peng. 2021. App’s Auto-Login Function Security Testing via
Android OS-Level Virtualization. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE). IEEE, 1683–1694.
[30] Yeali S Sun, Chien-Chun Chen, Shun-Wen Hsiao, and Meng Chang Chen. 2018.

ANTSdroid: Automatic malware family behaviour generation and analysis for
Android apps. In Australasian Conference on Information Security and Privacy.
Springer, 796–804.

[31] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 1–41.

[32] Wenyu Wang, Wing Lam, and Tao Xie. 2021. An infrastructure approach to
improving effectiveness of Android UI testing tools. In Proceedings of the 30th

ACM SIGSOFT International Symposium on Software Testing and Analysis. 165–
176.

[33] Michelle Y Wong and David Lie. 2018. Tackling runtime-based obfuscation in
android with {TIRO}. In 27th USENIX Security Symposium (USENIX Security 18).
1247–1262.

[34] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE). IEEE, 358–369.
[35] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao, and

Alvin TS Chan. 2018. NDroid: Toward tracking information flows across multiple
Android contexts. IEEE Transactions on Information Forensics and Security 14, 3
(2018), 814–828.

[36] Lei Xue, Hao Zhou, Xiapu Luo, Le Yu, Dinghao Wu, Yajin Zhou, and Xiaobo
Ma. 2020. Packergrind: An adaptive unpacking system for android apps. IEEE
Transactions on Software Engineering (2020).

[37] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li, Wenjun
Hu, and Dawu Gu. 2015. Appspear: Bytecode decrypting and dex reassembling
for packed android malware. In International Symposium on Recent Advances in

Intrusion Detection. Springer, 359–381.
[38] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: toward extract-

ing hidden code from packed android applications. In European Symposium on

Research in Computer Security. Springer, 293–311.
[39] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization

and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95–109.

1440

https://github.com/strazzere/android-unpacker
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://frida.re/
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://www.zhihu.com/question/55519031?sort=created
https://github.com/openatx/uiautomator2
https://github.com/skylot/jadx
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://source.android.com/docs/core/dalvik
https://app.baidu.com
https://www.bangcle.com/
https://f-droid.org/
https://f-droid.org/
https://hex-rays.com/
http://www.ijiami.cn/
https://www.manxi-inc.com/
http://www.nagain.com/
https://github.com/PackDiff/PackDiff
https://dev.360.cn/
https://wenku.baidu.com/view/4bc04063cb50ad02de80d4d8d15abe23482f03db.html
https://wenku.baidu.com/view/4bc04063cb50ad02de80d4d8d15abe23482f03db.html
https://cloud.tencent.com/
https://wetest.qq.com/
https://doi.org/10.1109/SPRO.2015.10

	Abstract
	1 Introduction
	2 Background
	2.1 Reverse Engineering of Android Apps
	2.2 Android App Packer
	2.3 Android System

	3 Overview of PackDiff
	3.1 The Need of System Instrumentation
	3.2 Overview

	4 The Details of PackDiff
	4.1 Linux Kernel Instrumentation
	4.2 Android Runtime Instrumentation
	4.3 Android Framework Instrumentation

	5 Evaluation setup
	5.1 Dataset
	5.2 Research Questions
	5.3 Experimental Environment

	6 Evaluation Results
	6.1 RQ1: Inserted Behaviors
	6.2 RQ2: Side Effects
	6.3 RQ3: Abusing of App Packers

	7 Discussion
	8 related work
	9 conclusion
	References

