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Abstract—As the largest source code repository, GitHub
has played a vital role in modern social coding ecosystem to
generate production software. Despite the apparent benefits of
such social coding paradigm, its potential security risks have
been largely overlooked (e.g., malicious codes or repositories
could be easily embedded and distributed). To address this
imminent issue, in this paper, we propose a novel framework
(named GitCyber) to automate malicious repository detection
in GitHub at the first attempt. In GitCyber, we first extract
code contents from the repositories hosted in GitHub as the
inputs for deep neural network (DNN), and then we incorporate
cybersecurity domain knowledge modeled by heterogeneous
information network (HIN) to design cyber-guided loss function
in the learning objective of the DNN to assure the classification
performance while preserving consistency with the observa-
tional domain knowledge. Comprehensive experiments based
on the large-scale data collected from GitHub demonstrate
that our proposed GitCyber outperforms the state-of-the-arts
in malicious repository detection.

Keywords-Cyber-guided DNN; heterogeneous information
network; malicious repository detection;

I. INTRODUCTION

With the broad scale proliferation of connected devices

and systems expected to reach billions by 2025 [1], soft-

ware has played a vital role in the increasingly connected

cyberspace that permeates people’s everyday lives. In recent

years, the number of software has increased exponentially,

whose market has grown into a multi-billion dollars in-

dustry [2]. Unlike conventional software development pro-

cess where developers significantly rely on code handbooks

to create software from scratch, more and more software

products are now created with the support from a highly

interoperable and collaborative social coding platforms such

as GitHub, which is the largest source code repository

hosting more than 100 million software projects maintained

by over 40 million registered developers [3]. Within the

modern software programming ecosystem, developers can

reuse libraries or adapt existing ready-to-use projects to

expedite software development. However, the popularity

and openness of such social coding environment not only

attract developers to contribute legitimate software but also

attackers to disseminate malicious codes [4]. For example,

as shown in Figure 1, malicious repositories that are in-

tentionally hosted in GitHub by attackers could be directly

forked by other developers; on the other hand, recent studies

[5]–[7] have shown that the interplay between GitHub and

other social media platforms is more active than we had

thought (i.e., malicious repositories hosted in GitHub could

easily disseminated through online programming discussion

platforms such as Stack Overflow or social media platforms

such as Reddit to generate the production software).

Figure 1: Attacks performed by using malicious repositories.

To maintain a productive yet secure ecosystem against

malicious attacks, GitHub provides a security bug bounty

site for code vulnerability reporting [8] as well as two

products CodeQL and LGTM for semantic code analysis

[9]. Nevertheless, such security policy is limited and merely

code content-based analysis may not be sufficient to address

those social coding security-related concerns. To enhance

the security of modern software programming ecosystem

against malicious attacks, there is apparent and urgent need

to develop novel methodologies that can automate malicious

repository detection in GitHub. Although there have been

several studies on social coding platforms, such as inse-

cure/toxic code snippet detection in Stack Overflow [10],
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Figure 2: System overview of GitCyber.

user behavior/influence analysis in GitHub [11], interplay

across platforms [7], to the best of our knowledge, the topic
of automatic detection of malicious repositories in GitHub
has not yet been studied in the open literature so far.

To address the imminent issue above, in this paper, we

propose a novel framework to automate malicious repository

detection in GitHub at the first attempt. An innovative

insight brought by this work is to empower deep neural

network (DNN) with observational cyber-guided knowledge

modeled by structural heterogeneous information network

(HIN). To this end, we first extract content-based features

from the code repositories hosted in GitHub as the inputs for

DNN. Although DNN based models have achieved tremen-

dous success in various applications [12]–[14], one of the

concerns regarding such black-box learning frameworks is

the lack of interpretability of its classifications with respect

to the known observational domain knowledge [15]. As the

moral says “man is known by the company he keeps”, in

addition to code contents, a repository’s legitimacy may

be judged by the social information that it associates with

in the modern coding platform [4]. How can we represent

such knowledge leveraging the social coding properties (e.g.,

a malicious repository could be always associated with

other malicious ones, and vice versa) and incorporate it

into the DNN based learning framework? To answer this

question, we introduce a structural HIN and present meta-

path based approach to model neighborhood relations among

code repositories hosted in GitHub; then, we incorporate the

knowledge encoded by repositories’ neighborhood relations

to design cyber-guided loss function in the learning objec-

tive of the DNN to assure the classification performance

while preserving consistency with the observational domain

knowledge. We develop a system named GitCyber (shown

in Figure 2) integrating our proposed method for malicious

repository detection in GitHub. The major contributions of

this work are summarized below:

• We proposes a novel cyber-guided DNN (i.e., CyberDNN)

with the design of cyber-guided loss function in the learn-

ing objective, to ensure the classification performance of

DNN while retaining consistency with the observational

domain knowledge.

• In addition to code contents, we elegantly represent the

domain knowledge by leveraging the social coding prop-

erties. Neighborhood relations among code repositories

in GitHub are decoded by structural HIN and meta-

path based method. The proposed solution provides a

natural yet innovative way for cyber-guided knowledge

representation.

• Comprehensive experiments based on large-scale data

collected from GitHub demonstrate the performance of

our developed system GitCyber in malicious repository

detection, by comparisons with the state-of-the-arts and

popular commercial security products. The source codes

and benchmark datasets will be made publicly available

after the review.

II. PROPOSED METHOD

In this section, we introduce our proposed method of

cyber-guided DNN for malicious repository detection in

GitHub in detail.

A. Content-based Repository Representation

A GitHub repository’s legitimacy largely depends on the

code contents which provide critical information about its

functionality and intention. In order to represent a repository

by using the content information, we first extract all the

tokens from each of its source code files. These tokens are

the high-level specifications of code behaviors, which can

reflect the intent and goal as they often contain the important

semantic information. For example, if the token of “coin-
hive” occurs in a source code file, the intent of its associated

repository could be related to cryptocurrency mining. We

further select a subset tokens, defined as malicious-oriented

keywords, by (1) calculating its repository frequency, and

(2) measuring the difference of its distribution between

malicious and benign repositories:

‖1(∀r � t)‖1 > ε and
‖1(∀r+ � t)‖1
‖1(∀r− � t)‖1

> δ, (1)
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where t means a token, the indicator function 1 takes

a value of 1 if the judgment is true and 0 otherwise,

r = r+∪r−, r+ (r−) denotes malicious (benign) repository.

By applying Eq. (1), we filter out tokens and obtain the

related malicious-oriented keywords (i.e., in this work, based

on our data collection described in Section III-A, we obtain

2,900 malicious-oriented keywords). The top ten malicious-

oriented keywords are “didoptOut, CoinHive, miner, authed-
mine, anonymous, threads, credentials, coin, hive, wss”. To

comprehensively describe any given repository, instead of

directly representing it as a feature vector of these extracted

keywords, we build a knowledge graph where nodes repre-

sent repositories and keywords, edges among nodes denote

whether a keyword occurs in a repository. The constructed

knowledge graph is able to capture the global co-occurrences

between repositories and keywords explicitly. To reduce

high computational cost for graph mining, we exploit graph

embedding technique DeepWalk [16] for node representation

learning, which consists of random walk generation and

skip-gram model. The learned low-dimensional repository

representation can be directly feed to a DNN framework for

malicious repositories detection.

B. Cyber-guided Deep Neural Network

To detect the malicious repositories, besides content

features directly extracted from source files, the relation-

ships among different repositories (e.g., two repositories are

hosted by the same user in GitHub) could provide important

information to determine the legitimacy of the repositories

[17]–[19]. More specifically, a repository’s legitimacy can

be inferred by its neighbors in the social coding platform:

a repository with more malicious neighbors holds a higher

possibility of being malicious, and vice versa. As discussed

above, the prediction by a DNN model using content-

based features only may lack consistency or interpretability

with respect to this observational knowledge. How can we

represent such knowledge and further incorporate it into a

DNN learning framework? To solve this problem, in this

work, we propose a novel framework (named CyberDNN),

in which we model the domain knowledge by using a

structural HIN and meta-path based approach and then we

formulate the represented domain knowledge into a cyber-

guided loss function in the learning objective for the DNN

classifier.

Domain Knowledge Modeled by HIN. The interoperable

and collaborative properties of Github enlighten us to lever-

age the following five social coding relationships to assist

with the representation of the observational knowledge:

• R1: user-fork-repository relation denotes a user either

proposes changes to other developer’s repository or uses

the repository as a starting point for further development;

• R2: user-comment-repository relation describes whether a

user posts a comment, question, or prop on a pull request’s

conversation tab;

Figure 3: Network schema and meta-paths for HIN

• R3: user-star-repository relation means a user stars a

repository, denoting his/her interest to keep track of the

repository;

• R4: user-contribute-repository relation describes if a user

contributes to a repository;

• R5: repository-have-file relation denotes if a repository

includes a source code file.

The multi-typed entities (i.e., user, repository, file) and

relations (i.e., R1-R5) can be concisely modeled by a HIN. A

heterogeneous information network (HIN) [20] is defined

as a graph G = (V, E) with an entity type mapping φ: V →
A and a relation type mapping ψ: E → R, where V denotes

the entity set and E is the relation set, A denotes the entity

type set and R is the relation type set, and the number of

entity types |A| > 1 or the number of relation types |R| > 1.

The network schema [20] for network G, denoted as TG =
(A,R), is a graph with nodes as entity types from A and

edges as relation types from R. Based on the definitions,

the network schema designed for our application is shown

in Figure 3.(a).

In order to precisely and concretely define the neighbors

of a repository in the social coding platform, we propose to

utilize the concept of meta-path built on HIN to characterize

such neighborhood relation. That is, if two repositories can

be connected via a meta-path, they will be regarded as

each other’s neighbor. Formally, a meta-path [20] P is a

path defined on the network schema TG = (A,R), and is

denoted in the form of A1
R1−−→ A2

R2−−→ ...
RL−−→ AL+1,

which defines a composite relation R = R1 · R2 · . . . · RL

between types A1 and AL+1, where · denotes relation

composition operator, and L is length of P . Based on the

network schema shown in Figure 3.(a), we design eight

meaningful meta-paths (i.e., PID1-PID8 shown in Figure
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3.(b)), which define the neighborhood relationships from

different views. For example, PID1: repository
fork−1

−−−−−→
user

fork−−−→ repository denotes a neighborhood relation

of two repositories if they are forked by the same user.

We use a real-world example discovered in GitHub for

further illustration: the user “Don****” in GitHub forks

several malicious cryptocurrency mining repositories; by

examining the repositories hosted by this user, we find that

he/she may be a mail system developer who embeds codes

from his/her forked repositories to his/her own developed

software (i.e., injecting cryptocurrency mining service to

mine Monero cryptocurrency). Another meth-path PID5:

repository
have−−−→ file

have−1

−−−−−→ repository depicts that two

repositories are regarded as neighbors if they both include

the same source file (e.g., a third-party library). Based on

the large-scale data collected from GitHub, we annotate a

benchmark dataset which includes 3,729 repositories (i.e.,

1,492 are malicious, 2,237 are benign) with 53,648 source

files related to 3,303 users. The benchmark dataset is an-

notated by anti-malware experts leveraging the results from

VirusTotal [21] which consists of more than 70 anti-malware

scanning tools. Resting on this dataset, as shown in Figure 4,

guided by the eight designed meta-paths (i.e., PID1-PID8),

we observe that the more malicious repositories the node

(i.e., repository) neighbors the higher probability the node

is classified as malicious, and vice versa. This observation

further demonstrates the rationale and validity of using meta-

paths built on HIN to define a repository’s neighborhood

relations.
By using meta-path to decode the neighborhood relations

among code repositories in GitHub, given two repositories i
and j, we formally define the observational domain knowl-

edge, termed cyber-guided principle, as following:
(
Pr(i)− Pr(j)

)
·
(
f(p+i , p

−
i )− f(p+j , p−j )

)
> 0, (2)

where Pr is the probability of a repository being predicted as

malicious by a DNN model, p+i (p−i ) denotes the probability

of repository i’s malicious (benign) neighbors guided by

a specific meta-path, f(.) measures the difference between

these two probabilities (i.e., p+i and p−i ).
Cyber-guided Loss Function. To preserve the consistency

of the represented domain knowledge, for any given pair

of repositories, i and j, if their predicted probabilities from

the DNN using content-based representations dissatisfy the

cyber-guided principle (Eq. (2)), a violation of this principle

should be considered as a regularizer to be added to the

learning objective. We regard this regularizer as cyber-

guided loss, which is formulated as:

Lcyb =

M∑

m=1

f(p+i,m, p
−
i,m)− f(p+j,m, p−j,m), (3)

where M is the number of designed meta-path, p+i,m (p−i,m)

denotes repository i’s malicious (benign) neighbors under

Figure 4: 1-order repository-repository neighborhood relations un-
der different meta-path schemes (i.e., PID1-PID8).

the m-th meta-path. Then, given the dataset D to be the

form of D = {xi, yi}ni=1 of n repositories, where xi ∈ R
d

is the representation of repository i learned from Section

II-A, yi is its class label (yi ∈ {+1,−1}, +1: malicious, -1

benign), by incorporating the cyber-guided loss (Eq. (3)), the

learning objective for our proposed CyberDNN is formulated

as:

argmin
θ
L+ λΩ(θ) + λcybLcyb, (4)

L =
1

n

n∑

i=1

(yi − ŷi)2, (5)

ŷi = DNNθ(xi), (6)

Ω(θ) = ‖W‖2, (7)

where L is the empirical loss of the DNN model (i.e., mean

squared error in our case), ŷ is the predicted label from

the DNN, θ = {W,b} represents the set of weight and

bias parameters across all hidden and output layers, Ω(θ)
is the L2 regularization, Lcyb is the designed cyber-guided

loss, λ and λcyb are the hyper-parameters determining the

importance of regularization and cyber-guided loss.
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III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we fully evaluate the performance of

our proposed method for malicious repository detection in

GitHub, by comparison with baseline methods and other

popular commercial anti-malware products.

A. Experimental Setup

Data Collection and Annotation. With the population of

cryptocurrency [22], in this work, we aim to investigate

those repositories relevant to blockchain and cryptocurrency

hosted in GitHub. Based on a set of designed cryptocurrency

related keywords (e.g., Bitcoin, coin, mine, etc.), we develop

a crawling tool to collect the open source repositories

containing these keywords as well as the corresponding

users’ profiles from GitHub through Oct. 15, 2019 till Nov.

31, 2019: 4,178 GitHub repositories hosted by 3,689 users

have been collected and preprocessed. In order to obtain

the ground truth, we apply a two-step mechanism: (1) The

collected repositories are first uploaded to VirusTotal [21]

consisting of more than 70 anti-malware scanning tools

to validate their legitimacy. Since there is a limit of file

size in VirusTotal (i.e., 200 MB), we manually remove 449

oversize repositories. (2) Based on the scanned results from

VirusTotal, we then ask anti-malware experts for further

analysis to obtain the final annotated dataset containing

3,729 repositories (i.e., 1,492 are malicious, 2,237 are be-

nign) with 53,648 source files related to 3,303 users. Based

on the extracted features and designed network schema, the

constructed HIN has 60,677 nodes (i.e., 3,726 nodes with

type of repository, 3,303 nodes with type of GitHub user,

53,648 nodes with type of source file) and 81,097 edges

including relations of R1-R5. To quantitatively validate the

performance, we use the measures shown in Table I.

Table I: Performance indices of malicious repository detection.

Indices Description

TP # of repositories correctly classified as malicious
TN # of repositories correctly classified as benign
FP # of repositories mistakenly classified as malicious
FN # of repositories mistakenly classified as benign
ACC (TP + TN)/(TP + TN + FP + FN)
F1 2 ∗ Precision ∗Recall/(Precision+Recall)
TPR TP/(TP + FN)
FPR FP/(FP + TN)

Baseline Methods. We first evaluate the performance of

our proposed GitCyber for malicious repository detection

by comparison with the following baseline methods:

• BoW-DNN: This method first represents each repository

as a bag-of-words feature vector based on the tokens

extracted using Eq. (1), and then feeds the feature vector

into a generic 5-layer DNN.

• BoW-SVM: This method replaces DNN in BoW-DNN

with Support Vector Machine (SVM) as the detection

module.

• Git-DNN: Instead of directly using bag-of-words as the

feature vectors for repositories, this model applies the

method introduced in Section II-A to learn the low-

dimensional repository representations as the inputs fed

to the DNN;

• Git-SVM: Similar to the setting of Git-DNN, it replaces

the DNN model with SVM;

• M2V-DNN: We enhance the HIN described in Section

II-B by incorporating the repository’s content informa-

tion, i.e., adding extracted keywords as entities and then

applying metapath2vec [23] for repository representation

learning. The learned representations are then fed to the

DNN for training and prediction.

• M2V-SVM: This method replaces DNN in M2V-DNN by

SVM as the classifier.

Commercial Security Products. We further validate the

performance of our developed GitCyber by comparisons

with other security products such as LGTM (a semantic

code security analysis tools provide by GitHub) and over

70 popular anti-malware products which are integrated in

VirusTotal [21].

Hyper-parameters. The experimental studies are conducted

under the environment of Ubuntu 16.04 operating system,

plus Intel i9-9900k CPU, GeForce GTX 2080 Ti Graphics

Cards and 64 GB of RAM. All DNN models are imple-

mented using the Keras package [24] with a batch size of

1000 and a maximum number of epochs of 100,000. The

value of λ is set to 1 in all experiments. Other parameters

include the dimension of node embedding d = 128, neigh-

borhood size w = 5, iteration time epoch = 5 for skip-gram

model. For SVM, we apply sklearn.svm with RBF kernel

in our experiments and the penalty is empirically set to 16

while other parameters are set by default. To facilitate the

comparisons, we use 10-fold cross validations.

Table II: Comparisons with different baseline methods

Method ACC F1 TPR FPR

BoW-DNN 0.8172 0.7721 0.7740 0.1507
BoW-SVM 0.8305 0.7810 0.7553 0.1632

Git-DNN 0.8546 0.8143 0.7970 0.1354
Git-SVM 0.8649 0.8267 0.8056 0.1296

M2V-DNN 0.8842 0.8495 0.8170 0.1221
M2V-SVM 0.8945 0.8704 0.8263 0.1158

GitCyber 0.9146 0.8893 0.8663 0.0892

B. Comparisons and Analysis

Based on the above dataset, we first show the perfor-

mances of GitCyber and all the baseline methods introduced

above in malicious repository detection. The experimental

results are illustrated in Table II. From the results, we

observe that:
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• BoW-based method (i.e., BoW-DNN and BoW-SVM)

using the traditional bag-of-words as feature vectors ob-

tains the worst detection performance, which shows such

representation fails to depict the higher-level semantics in

malicious repository detection.

• M2V-DNN and M2V-SVM which incorporate the repos-

itory’s content information with domain knowledge (for-

mulated as the neighborhood relations among repositories)

achieve better outcomes than the models merely consider-

ing content information, such as Git-DNN and Git-SVM.

This demonstrates that the domain knowledge helps the

performance of malicious repository detection.

• Our proposed system GitCyber which applies cyber-

guided loss to regularize the learning objective of tradi-

tional DNN model significantly outperforms all baseline

methods. This shows the superiority of using the obser-

vational domain knowledge in the learning objective for

improving generalization performance.

Table III: Comparisons with other commercial security products.

Method Version ACC F1 TPR FPR

LGTM - 0.6799 0.5696 0.6498 0.6199

Antiy-AVL 3.0.0.1 0.8971 0.8526 0.7431 0.1717
Avast 18.4.3895.0 0.9073 0.8705 0.7779 0.1484
AVG 18.4.3895.0 0.9129 0.8796 0.7940 0.1377
Avira 8.3.3.8 0.8671 0.8021 0.6722 0.2190
BitDefender 7.200 0.9035 0.8631 0.7592 0.1609
ClamAV 0.102.0.0 0.8521 0.7780 0.6468 0.2360
Comodo 31649.000 0.8899 0.8590 0.8375 0.1086
Cyren 6.2.2.2 0.9003 0.8584 0.7545 0.1641
DrWeb, 7.0.41.7240 0.9137 0.8819 0.8040 0.1310
Emsisoft 2018.12.0.1641 0.9014 0.8596 0.7538 0.1645
FireEye 29.7.0.0 0.9006 0.8583 0.7518 0.1658
Fortinet 5.4.247.0 0.8917 0.8441 0.7318 0.1793
F-Prot 4.7.1.166 0.8599 0.7890 0.6542 0.2311
F-Secure 12.0.86.52 0.8617 0.7928 0.6602 0.2271
GData 25.23778 0.9073 0.8714 0.7839 0.1444
Ikarus 0.1.5.2 0.9076 0.8712 0.7806 0.1466
Jiangmin 16.0.100 0.7752 0.6698 0.5692 0.2879
Kaspersky 15.0.1.13 0.8939 0.8506 0.7538 0.1645
MAX 2019.9.16.1 0.9033 0.8627 0.7585 0.1614
Mcafee 6.0.6.653 0.8695 0.8057 0.6756 0.2168
Microsoft 1.1.16500.1 0.8711 0.8413 0.8528 0.0983
NANO-AV 1.0.134.24859 0.9070 0.8734 0.8007 0.1332
Rising 25.0.0.24 0.9057 0.8668 0.7659 0.1565
Sophos 4.98.0 0.8438 0.7578 0.6100 0.2606
Zillya 2.0.0.3933 0.7998 0.6673 0.5010 0.3335

GitCyber - 0.9146 0.8893 0.8663 0.0892

We then evaluate the detection performance of our de-

veloped GitCyber in comparisons with twenty-five popular

commercial anti-malware products. From Table III, we can

see that GitCyber yields the highest accuracy, F1-measure

, True positive rate (TPR) and False positive rate (FPR)

in the detection of cryptocurrency-related malicious repos-

itory. To put this into perspective, GitCyber achieves a

2% accuracy improvement in comparison with Kaspersky

and 4% with Mcafee. This again demonstrates that our

developed framework GitCyber can significantly improve

the detection performance in real world data as it not only

takes the repository’s content into consideration, but also

incorporates the domain knowledge into the DNN-based

learning framework for regularization.

Figure 5: Parameter sensitivity, stability and scalability

C. Parameter Sensitivity, Stability and Scalability

In this set of experiments, we first conduct the sensitivity

analysis of how different choices of parameters (i.e., vector

dimension d and neighborhood size w) will affect the

performance of GitCyber in malicious repository detection.

From the results shown in Figure 5.(a), we observe that

the performance tends to be stable once d reaches around

150; similarly, from Figure 5.(b) we can see that the perfor-

mance inclines to be stable when w increases to 5. Overall,

GitCyber is not strictly sensitive to these parameters and

is able to reach high performance under a cost-effective

parameter choice. We then further evaluate the scalability of

GitCyber. Figure 5(c) shows the running time of GitCyber
with different sizes of the dataset, which illustrates that the

running time is quadratic to the number of samples. When

dealing with more data, approximation or parallel algorithms

can be developed. We also run experiments using the default

parameters with different number of threads (i.e., 1, 4, 8, 12,

16), each of which utilizes one CPU core. Figure 5(d) shows

the speed-up of GitCyber deploys multiple threads over the

single-threaded case, which shows that the model achieves

acceptable sub-linear speed-ups as the line is close to the
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optimal line. For stability evaluation, Figure 5(e) shows the

overall receiver operating characteristic (ROC) curves of

GitCyber based on the 10-fold cross validations; it achieves

an impressive 0.857 average TP rate at the 0.095 average FP

rate for malicious repository detection. From the results and

analysis above, GitCyber is efficient, scalable and stable for

practical use.

IV. RELATED WORK

There have been many works on knowledge discovery

from social coding platforms [7], [25]. However, most of

these works only focus on code semantics and user behav-

iors, but rarely address the issue of coding security analysis.

The only exceptions appear to be [29] and [10], which both

exploit code content-based information to detect code clones

in social coding platform. Though those research results

are promising, they fail to consider domain knowledge

in solving the related problems. Different from existing

works, in this paper, we take the domain knowledge (i.e.,

social coding properties) into consideration for malicious

repository detection.

HIN is proposed to model different types of entities and

relations and has been applied to various applications, such

as scientific publication network analysis [20], [30], health

intelligence [31], [32] and cybersecurity [33]–[38]. Several

measures (e.g., meta-path [20], [39], meta-structure [40],

[41], meta-graph [42], [43]) have already been proposed for

relevance computation over HIN entities. Different from the

existing works, in this paper, we first model the cybersecurity

domain knowledge by using HIN and the concept of meta-

path and then we incorporate the represented knowledge as

cyber-guided loss to devise the DNN. The proposed cyber-

guided DNN framework is able to preserve the consistency

of predictions with observational domain knowledge to

assure the detection performance.

V. CONCLUSION

To address the imminent code security issues in social

coding platforms, in this paper, we propose a cyber-guided

DNN framework, named GitCyber, to automate malicious

repository detection in GitHub. We bring a new insight to

empower deep neural network with observational knowl-

edge. In GitCyber, we first learn the content-based repre-

sentations of the code repositories hosted in GitHub; and

then we introduce a structural HIN and the concept of meta-

path to model the observational domain knowledge encoded

by social coding properties (i.e., a malicious repository

is always associated with malicious ones in the social

coding platform, and vice versa); finally, we incorporate

the represented domain knowledge to design the cyber-

guided loss to regularize the learning objective in the DNN

model to assure the detection performance. Comprehensive

experiments based on the annotated repositories hosted in

GitHub demonstrate the performance of our developed sys-

tem GitCyber in malicious repository detection, by compar-

isons with the baseline methods and the popular commercial

security products.
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