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Abstract—Due to the fast growth of the photovoltaic (PV)
market, more power plants have become available with data
accessible for power forecasting and long-term reliability assess-
ment. The accuracy of the modeling on this data is influenced
heavily by the quality of the data and can be improved through
data imputation to fill missing gaps. In this study, we introduce
a FAIRification framework for ingesting data from PV power
plants. This process improves the efficiency of modeling on time
series data provided by different labs and companies through
an automated ingestion process. We take this analysis further by
investigating the use of different imputation methods for filling
in large chunks of missing data. Specifically, mean interpolation,
linear interpolation, and k-nearest neighbors (KNN) were used
in this report to fill in missing data for module temperature
and power in a PV time series. It was found that the KNN
algorithm outperforms the other methods due to its ability to
leverage spatial coherence from nearby systems. These results
point towards the potential use of a spatio-temporal graph neural
network (st-GNN) in order to impute data using spatial coherence
between systems in a large data set with time series data from
many PV power plants.

Index Terms—FAIRification, Spatiotemporal GNN, Missing-
ness

I. INTRODUCTION

Photovoltaics (PV) have become a dominant force in the

energy sector over the past 20 years. The total, installed solar

capacity has increased 500 times since 2000 to a total of 773

GW at the end of 2020 [1]. Not only has the field expanded so

much in total, but the rate of installations continues to increase

as well. In 2020, the world reported a new record of solar

installations by implementing 138 GW of solar energy in a

year [1]. The growth of the PV market has pushed the demand

for power forecasting and performance evaluation for a huge

population of PV power plants which have spatiotemporal

coherence that can be utilized for improving model accuracy

[2]. There are many logistical challenges towards performing

this kind of time series analysis. Different groups use dif-

ferent types of databases, different variable naming schemes,
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different data cleaning processes, etc. The time series data

itself is typically missing data, or can even have incorrect

data from faulty sensors [3]. Manually addressing these kinds

of issues takes time away from developing new models on

the data which takes time away from producing more efficient

PV modules based on the results. Through the development

of an automated framework for ingesting time series data

and feeding it into machine learning models, we can make

our analysis methods more efficient at a larger scale. Much

of the standards for our automated process are based on

the FAIR principles introduced through the publication of

Wilkinson et al. [4]. These principles aim to increase the

ability of both humans and computers to understand data by

making it Findable, Accessible, Interoperable, and Reusable

(FAIR). These guiding principles have been the foundation

for our automated process as we try to design a system

to standardize the analysis of time series data across the

whole solar field. In this paper, we propose a FAIRification

framework for spatiotemporal data from PV power plants. We

also propose automated methods for data quality assessment

and missingness pattern classification that can be applied to

time series PV data across the field. Investigating missingness

patterns is essential for deciding imputation methods that

can improve the model performance for degradation analysis

studies. In this case, we examine missingness imputation

through the application of several baseline methods including

mean interpolation, linear interpolation, and KNNs.

II. METHODS

A. PV Power Plants FAIRification

The data used in this project are stored in the SDLE

research center’s Apache Hadoop/Hbase/Spark cluster [5],

which we will henceforth refer to as CRADLE (Common

Research Analytics and Data Lifecycle Environment). This

environment is based on the Cloudera CDH distribution. We

use a Hadoop Distributed Filesystem (HDFS) to store all of

our raw data. After cleaning, the data used for analysis is

moved into the Apache Hbase. Hbase takes its inspiration

from Google’s Big Table, a NOSQL database based on triples

where each observation in the dataframe has a rowkey and
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a columnkey. In order to interact with CRADLE, we rely on

Case Western’s high performance computing cluster (HPC), an

environment with over 250 compute servers, including more

than 60 GPU nodes and 7000 processors. While the data used

for this analysis is not made public yet, the data will be

made accessible by the general PV community on OSF.io in

accordance with FAIR guidelines.

We have developed a four-step data ingestion pipeline for

receiving data from outside groups and ingesting it into the

CRADLE ecosystem. Fig. 1 shows a visual representation of

this process.

Fig. 1. Data Ingestion Pipeline

After receiving time series data, the first step is to move the

data into the staging area. The staging area is stored in Case

Western’s V-drive, which is a Windows file sharing system

hosted by the university. Every night, the contents of the V-

drive get backed up automatically to the HPC for redundancy.

Once the data is safe in the staging area, the next step is to

move the raw data into Case’s Hadoop Distributed File System

(HDFS). At this point in the process, the raw data has been

comfortably stored where it can be accessed should anyone

ever need it again. The next step is to preprocess the data.

This includes basic data cleaning, adding satellite weather data

from SolarGIS, and metadata FAIRification. After the data has

been processed, it is stored in an Apache Hbase table for ease

of access for future analysis and modeling.

An especially important aspect of our data preprocessing

step is metadata FAIRification. There are many benefits as-

sociated with FAIRifying our data. It makes our data more

easily shareable with other groups because of the standards

set for variable nomenclature and structure. It makes it easier

for other groups to share data with us, as we can utilize

our FAIRification framework to help computers understand

more generally what certain variables mean. It also makes it

easier to extract meaning from our modeling because of our

structured, graph approach for our metadata. There has been an

extensive push in the US to make metadata “FAIR” recently,

as publishers, science funders, and government agencies have

begun to establish requirements for the proper management

of metadata. As such, we have been implementing FAIR

principles into the ingestion of our data. Specifically, we use

a standardized Javascript Object Notation for Linked Data

(JSON-LD) filetype to store our metadata [6]. We have defined

a new structure for our JSON-LD metadata files through the

creation of a solar power plant ontology. In order to create

and design our solar time series ontology, we have used the

Protege ontology editor [7].

An ontology is a formal dictionary of terms for a given

industry or field that shows how the terms are related through

densely interconnected webs. Part of the point of doing this

is to standardize terms for solar time series data by defining

how variables should be defined across the industry. In our

model, for example, latitude is to be spelled exactly latitude

(not lat, latd, etc), and it is to be measured in degrees always.

This way, there is no ambiguity. An ontology not only defines

terms, but it defines a structure for the metadata as well. An

ontology is the blueprint for linking metadata terms together

through the creation of a knowledge graph. When an ontology

is filled in with real data, it becomes a knowledge graph. An

ontology is made through the creation of triples, or object-

relationship pairs. Fig. 2 shows an example of a triple that

connects a solar power plant to a latitude by the hasLatitude

property. An ontology makes use of more general terms,

defining how classes of objects relate to each other. This

can allow a computer to understand generally what a variable

means, which can help in its understanding of data received

from other groups. A knowledge graph fills the classes from

an ontology with values based on the structure defined by the

ontology.

Fig. 2. Examples of Object-Relationship Pairs for the Ontology Blueprint
and Resultant Graph

B. Data Quality Assessment

At SDLE, we have developed an R package for analyzing

time series data called PVplr [8] that includes functions for

the automated analysis of data quality. These functions include

a heatmap generator and an automated data grading function.

The data grading function assigns a letter grade for the data

based on outliers, missingness percentage, and longest missing

gap [3]. For a data set to receive an ”A” in all categories, it

must have outliers less than 10%, missingness less than 10%,

and a longest missing gap below 15 days, for example. A full

outline of the metrics for the data quality grades can be seen

in Fig. 3.

III. PV POWER PLANTS DATA SETS DESCRIPTION

There are eight PV data sets that have been received from

different companies and research institutions and have been

ingested to the database of our research group. Table I lists
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Fig. 3. Standards for PV time series grading system

some basic information about each data set. The PV systems in

the same data set have the same meta variables and time series

variables, but the PV systems in different data sets have some

differences regarding both meta and time series variables. For

example, meta information about the number of strings and

the number of modules in each string exists in data set 1 but

not in data set 2. The irradiance data in data set 1 is global

horizontal irradiance, but it is plane of array irradiance in data

set 2. The PV systems in different data sets can also refer to

different scales. There are individual PV modules (such as in

the data set 4), inverters for a PV array (such as in the data

set 1), and inverters for a PV site (such as in the data set 2).

TABLE I
LIST OF PV SYSTEMS

ID Average Age # of Systems Time Interval (minute)

1 8.24 354 15
2 1.42 1088 1
3 4.24 98 5
4 5.75 8 10
5 0.95 8 30
6 3.13 8 1
7 1.72 70 1
8 2.38 28 15

The data shared from system 8 is from the Florida So-

lar Energy Center and is the focus of this analysis. More

specifically, data from PV systems from the SunSmart Schools

program were made available. From inverters that control

the racks of PV modules at these schools, we have many

years of time series data logged. In total, 28 sites from this

program have been shared from FSEC to the SDLE lab at

Case Western. This data includes 15 minute interval time

series data with information about power output, ambient and

reference temperature, irradiance, battery properties, and input

and output current and voltage. The length of the time series

varies between schools, with the longest set including about 9

years of data, and most of the data sets including data on the

order of about 2 years.

IV. DISCUSSION

A. FAIRification

We have developed FAIRmaterials, both an R [9] and

Python [10] package, for automating the creation of FAIRified

JSON-LD files. Given a simple excel file of a user’s metadata,

these packages automatically generate a FAIRified JSON-LD

file based off the standards that we have developed in our

solar power plant ontology. We are currently going through

all received data sets and collecting the variables provided

with their typical names and units. This information will be

provided to our collaborators, including both companies and

research institutions, that own the time series PV data of

multiple systems. Using feedback from these entities, we can

improve our FAIRification process based off the input of real

world users.

We have also developed an ontology to describe time series

data for its application in solar. The steps we have taken for

this process are outlined in Fig. 4.

Fig. 4. Steps in Ontology Design

The first step was to create a class hierarchy that describes

all of the objects that need to exist in our ontology. In this

case, we need to create a general class that describes a solar

power plant. Each power plant will have information about its

location, array, time series, and inverters. So we have chosen

these to be the main sub-classes that describe our power plants.

There is a visual depiction of this design in Fig. 5.

Fig. 5. Class Hierarchy for Solar Ontology

Given the structure from our class hierarchy, we can add

more information to our graph by defining how our properties

are connected. For example, properties can be described as

functional if there is one unique value of y for each instance,

x. So a PV power plant would only have one unique value

for a longitude, making that a functional property. With a

well defined hierarchy and correct property descriptions, we

can make use of a reasoner in order to infer things about

our data. As we begin to add instance level data into our

ontology to create a knowledge graph, we can make use of the

ontology’s reasoning capabilities in order to discover important

relationships in our data.

B. Data Grading

With the data from the SunSmart Schools program, we have

performed an analysis of the data quality of a set of PV sites

with the PVplr package [8]. In Fig. 6 we have generated a

heatmap to visualize the quality of a representative data set.

We plot the time of day on the y-axis, with the date on

the x-axis. The graph is then colored in by the power output.

This kind of visualization is especially powerful for grading
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Fig. 6. Data Quality Heatmap

data quality, because missing chunks in the data are made

especially apparent as grey bars. We can also see that the data

that is not missing meets our expectations. We get high power

output during the day when it is sunny, and no power output at

night. Such analysis is important to perform at the beginning

of a project in order to ensure that the data that we are working

with is in line with reality. In Fig. 7 are heat maps plots of all

the data that exist in our set. This application at scale is made

easy through the use of the PVplr R package.

Fig. 7. Heatmaps for All of the Data in the Analysis Set

While a visual representation of the data is useful for human

interpretation of the data quality, it’s important to convert

this into something that a computer can make sense of. We

do this through assigning the data letter grades based on

their percentage of outliers, missingness percentage, longest

missing gap, and a pass/fail based on if the data is longer

than two years or not. The grading function applied at scale

on our data set is described in Table II. Using the results from

our data grading process, we can easily decide which power

plants provide more complete data for our analysis. This in

turn allows us to focus in on the more important data sets that

will allow for more in-depth analysis on our data. With an

TABLE II
GRADED PV SYSTEMS

Site Outlier Missingness Longest Missing Length
Percentage Percentage Gap Requirement

1 B A C P
2 B A D P
3 B A A F
4 B B D P
5 A C C P
6 B A A F
7 B B D P
8 C A A P
9 B A A P
10 B A A P
11 B A A P
12 C A A P
13 C A A F
14 B A A F
15 B B D P
16 B A A F
17 B A A F
18 B A A P
19 A D D P
20 B A C P
21 B A A P
22 B B D P
23 B C D F
24 B B D P
25 B A A P
26 B A A F
27 C A A F
28 A D D F

idea of the missingness existing in the data set, we can move

towards trying to impute this missing data.

C. Missingness Pattern Discovery

We can characterize the patterns of missing values between

the different PV time series data sets from two aspects. From a

micro perspective, missing data in a series can be categorized

into single or block. Single refers to a single missing value be-

tween known values while block refers to consecutive chunks

of missing values. This is why our data grading function

measures both missingness percent and longest missing gap.

From a macro perspective between different power plants,

depending on the positions of missing values, we consider four

common missingness patterns: Missing Completely at Random

(MCAR), Disjoint, Overlap, and Blockout, see Fig. 8 [11].

By identifying the common missingness patterns in our PV

data sets, we can possibly construct suitable missing value

imputation (MVI) models whose assumptions match our data

sets.

D. Missing Data Imputation

In this section, we focus on 10 specfic sites in the Sunsmart

schools data set that contain data at the same time over a

one year period ranging from 09/01/2014 to 08/31/2015. We

aim to impute the missingness of the module temperature and

power readings from these sites. We measure imputation error
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Fig. 8. Four Missingness Scenarios

by Mean Absolute Error (MAE) and Rooted Mean Squared

Error (RMSE), defined as follows:

MAE =
1

m

m
∑

i=1

|Pi − P̃i|; RMSE =

√

√

√

√

1

m

m
∑

i=1

(Pi − P̃i)2

(1)

where m = card(M), Pi ∈ P , and P̃i ∈ P̃ , M is the set

of missing data, P is set of imputed values, and P̃ is ground

truth.

We compare the performance of three imputation methods.

(1) Linear Interpolation (LI) [12]: a timeseries imputation

method that fits a simple linear model using two values before

and after the missing data block. Each missing data point will

then be estimated using the linear model between these points.

(2) Mean Imputation (Mean) [13]: a common approach that

uses the column-wise mean to fill the missing data.

(3) K-nearest Neighbors (KNN) [14]: imputes data by find-

ing and averaging the K nearest neighbors to fill in the missing

value.

To evaluate the accuracy of these three methods, we inject

missing values into the real-world data sets. Particularly, we

are interested in how different imputation methods perform

when there are large chunks of missing values (Block Miss-

ing). To achieve this, we corrupt daily time series data of each

PV system by randomly injecting a 16-hours block of missing

values.

Our experiments have demonstrated the superiority of KNN

over the LI and Mean methods for imputing missing values in

the case of Block Missingness, see Fig. 9 and Fig. 10. KNN

achieves a gain from 14.18% to 63.72% in imputation accuracy

compared to LI and Mean. KNN likely outperforms other

methods because it leverages spatial coherence from nearby

systems while LI and Mean impute each PV system separately.

The rich neighboring information within PV systems can

improve the accuracy of imputation and potential predictive

tasks like PV degradation rate prediction.

E. Spatiotemporal GNN Autoencoders

We propose the idea of using spatiotemporal GNN autoen-

coders to better leverage spatial coherence of PV systems and

potentially further improve the imputation accuracy over KNN.

First, we need to translate PV systems into a graph. We map

the PV systems into a spatiotemporal graph G = (V,E,Xv(t))
where nodes V represent PV systems, edges E are assigned

using similarity or spatiotemporal correlations among PV

Fig. 9. Imputation Error for Module Temperature

Fig. 10. Imputation Error for Power

systems, and Xv(t) indicates node features. Since the locations

of PV systems are fixed, the graph structure is static with time-

invariant nodes and edges. However, Xv(t) is time-varying.

Each node consists of a set of time-series features such as

power, irradiance and temperature and may have missing

values in one or multiple of these features.

Spatiotemporal Graph Neural Network modeling has

demonstrated its performance improvement in power forecast-

ing for PV power systems rather than utilizing an individual

PV system [2] by capturing both spatial and temporal depen-

dencies and coherence among PV systems. We propose a new

framework - St-GNN Autoencoders (STGNN-AE) to detect

and impute missing values in the PV data sets. Given a set

of validated and correct data, we can learn a STGNN-AE,

which consists of an encoder to transform inputs into a lower

dimension representation and a decoder to recover the inputs

from reduced data with a small reconstruction error. STGNN-

AE will detect and localize erroneous values as outliers when

observing a significant reconstruction error, suggest normal

values to be used for imputation with the transformed values

from reconstructed embedding by the decoder for local strat-

egy, and provide synthetic PV input for simulation analysis

over PV plants and regions when and where sensors are not

available. The imputation quality will be measured by the

impacts on the performance of downstream learning tasks like

PV performance loss rate (PLR) prediction.

V. CONCLUSIONS

We have demonstrated in this paper the FAIRification of

spatiotemporal PV time series data. By creating a solar power
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plant ontology, we propose standards for the naming and

structure of metadata used to describe the data from these

power plants. We can also use this ontology to assist in our

modeling, where the computer can infer things about our data

based on the relationships we have defined. Using the structure

from this ontology, we have developed both R and Python

packages for the automation of the FAIRification process.

Going further, we have also developed an R package that

automates the analysis of the quality of a data set through letter

grades and heatmaps. We have shown that imputation meth-

ods that can leverage spatial coherence (e.g.: KNN) achieve

higher imputation accuracy over simple methods like Linear

and Mean Interpolation. To further improve the imputation

accuracy, we propose the use of St-GNN autoencoders to

detect and impute missing values from a data set by utilizing

the spatial coherence between the power plants in the data set.
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[12] T. Blu, P. Thévenaz, and M. Unser, “Linear interpolation revitalized,”
IEEE Transactions on Image Processing, vol. 13, no. 5, pp. 710–719,
2004.

[13] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, and K. G. Moons,
“A gentle introduction to imputation of missing values,” Journal of

clinical epidemiology, vol. 59, no. 10, pp. 1087–1091, 2006.
[14] R. Malarvizhi and A. S. Thanamani, “K-nearest neighbor in missing

data imputation,” International Journal of Engineering Research and

Development, vol. 5, no. 1, pp. 5–7, 2012.

978-1-7281-6117-4/22/$31.00 ©2022 IEEE 0801

Authorized licensed use limited to: ASU Library. Downloaded on April 28,2023 at 04:13:46 UTC from IEEE Xplore.  Restrictions apply. 


