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ABSTRACT
Fault localization is a well-received technique for helping develop-
ers to identify faulty statements of a program. Research has shown
that the coverages of faulty statements and its predecessors in
program dependence graph are important for effective fault local-
ization. However, app executions in Android split into segments
in different components, i.e., methods, threads, and processes, pos-
ing challenges for traditional program dependence computation,
and in turn rendering fault localization less effective. We present
RunDroid, a tool for recovering the dynamic call graphs of app
executions in Android, assisting existing tools for more precise
program dependence computation. For each execution, RunDroid
captures and recovers method calls from not only the application
layer, but also between applications and the Android framework.
Moreover, to deal with the widely adopted multi-threaded commu-
nications in Android applications, RunDroid also captures methods
calls that are split among threads.

Demo : https://github.com/MiJack/RunDroid
Video : https://youtu.be/EM7TJbE-Oaw
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1 INTRODUCTION
Android applications (i.e., apps) have been witnessed a massive
growth over the last decade. As such, more and more attentions
are paid to the quality and reliability of apps. Among techniques
that ensure high quality of apps, fault localization technique is a
well-received technique for finding faulty statements of apps[12]
[11]. Research [7, 8] has shown that the coverage of faulty state-
ments and its predecessors in program dependence graph are im-
portant for effective fault localization. However, app executions
split into segments in different components, i.e., methods, threads,
and processes, posing challenges for traditional program depen-
dence computation, and in turn rendering fault localization less
effective. Specifically, the major challenges posed by Android apps
for precise computation of program dependencies are as follows.

• Multi-thread communications. Android apps employ worker
threads for intensive operations, while only objects running
on the UI thread have access to UI objects. Hence, handlers
are utilized commonly to pass messages and data between the
UI thread and worker threads.

• Implicit callbacks. Android apps are driven by events and call-
backs, such as onClick(), onActivityResult(), that are invoked
by the Android framework.

• Lifecycle methods. In Android apps, each component, e.g. an
activity, is required to follow a lifecycle, which are defined via
callbacks.1

Despite achievements made by static analysis [6, 10, 14, 15] to
model Android execution environment, these techniques still face
challenges in precisely inferring the whole-program control flows
of Android apps. Besides the aforementioned major challenges,
Android apps use reflections (e.g., composing UI views and instanti-
ation of components), type polymorphism (e.g., customized Thread
classes and UI views), and temporary classes (e.g., event handlers
registered using temporal classes), which cause further difficulties
for static analysis to be precise and scalable.

To address these challenges and improve the precision of ex-
isting fault localization techniques for Android apps, we present
RunDroid, a tool that recovers app executions’ dynamic call graphs
1In this work, we specifically differentiate lifecyclemethods from other implicit callback
methods to better understand and visualize the internal behaviors of each activity.
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Figure 1: Overview of RunDroid

for constructing more precise program dependence. RunDroid in-
struments the program to capture method calls at the application
layer, and intercepts messages between the application and the
Android framework, including lifecycle methods. All the captured
runtime information is then written to log files. For each execu-
tion, RunDroid identifies the captured method calls from the log
files, and recovers the caller-callee relationships among them to
construct a dynamic call graph. Furthermore, RunDroid captures
the asynchronous implicit method calls introduced by Android’s
multi-threaded handler mechanism, and integrates them into the
dynamic call graph to fill in the missing links between the thread
initiating the asynchronous thread and the initiated asynchronous
handler thread.

Additionally, we understand that human effort is typically un-
avoidable during fault localization. Developers will need to examine
not only the estimated results and faulty statements, but also the
execution traces with their data flows, especially for the failing
test cases. RunDroid hence visualizes the recovered execution call
graph, with the object information, to provide graphical assistance.
To some extent, it can reduce the cost for tracking the execution
situation for Android apps.

2 MOTIVATING EXAMPLE
We first use an example to intuitively explain the challenges faced
by the traditional fault localization techniques. We then describe
the major components of the RunDroid framework.

Table 1: Motivating Example
t1 t2 t3 t4 t5

v btn0 btn1 btn1 btn2 btn1 result
num - -1 0 - -2 τ

1 void onClick(View v) {
2 num = getNumber(); 1 1 1 1 1 NA
3 if(v.getId() == R.id.btn1) { 1 1 1 1 1 NA
4 if( num == 0 ) { 0 1 1 0 1 0.67
5 num=1; 0 0 1 0 0 -1.0
6 }
7 }
8 Thread t = createThread(v.getId()); 1 1 1 1 1 NA
9 t.start(); 1 1 1 1 1 0.67
10 }
11 TaskThread.run() {
12 if(v.getId() == R.id.btn1) { 1 1 1 1 1 NA
13 loadData(num); /* FAULT */ 0 1 1 0 1 0.67
14 }
15 }

0 1 0 0 1
Note: The last columns show the estimates based on the causal influence model introduced in [7, 8].

In Table 1, we show an example faulty program with a faulty
statement at Line 13. Instead being passed directly, the parameter of

method loadData(int) at Line 13 should be checked if it is a positive
value before passing into the method. The first column shows the
program with line numbers associated with each of its statements.
Columns 2 through 6 represent test cases t1-t5, respectively. The
header of each test case column shows the values ofv and num that
are used at Lines 1 and 2, respectively. The values for a test case
column indicate whether the corresponding program statement is
exercised by the test case, 1 for covered and 0 for not covered. The
bottom row shows the outcome of each test case execution, with
“1” indicating a failing execution and “0” indicating a passing one.

Suppose we compute the failure-causing effect of the program
using the causal influence model [7, 8], we are able to compute the
estimate numbers shown in Column “result”. Lines 4, 9, and 13 are
all estimated with the highest score 0.67.

Causal influence model, as well as many other fault localization
techniques, considers the effects of dynamic program dependence,
as dependence information contributes greatly to not only trig-
gering the effects of faults, but also propagating them to program
output. Unfortunately, due to Android’s specific programming para-
digm, the control dependency between Line 8 and Line 11 cannot be
captured in the the example showed. And, losing appropriate con-
trol flows causes the computation to report three statements having
the same highest score, rendering the fault location techniques
less effective in Android. Therefore, to improve the fault localiza-
tion techniques for Android apps, RunDroid aims to recover the
very much needed control-flow dependencies through the runtime
information and the dynamic call graphs during the executions.

3 RUNDROID
Figure 1 shows the overview of RunDroid. RunDroid takes the
source code of an app as input, instruments the source code, and
intercepts the executions of the instrumented app to analyze mes-
sage objects. After each execution, RunDroid produces a set of log
files, which will be further analyzed to generate the dynamic call
graph for the execution.

RunDroid consists of three components. The preprocessor compo-
nent instruments the program source to probe instructions, so that
every method invoked during execution will be properly logged.

The second component is an interceptor to capture the method
calls between application layer and the Android framework, includ-
ing lifecycle methods and the implicit callbacks. It predefines a set
of method calls of interest and logs their executions. Take class an-
droid.app.Activity as an example, the methods setContentView(andr-
oid.view.View) and onCreate(android.os.Bundle) are the methods of
interest. The invocations of these methods usually mean that the
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Figure 2: The snippet code about Handler

messages are transmitted between the application and the Android
framework. Whenever these methods are invoked during execution,
RunDroid intercepts the messages, and associates them with the
corresponding method calls in the application layer to produce a
complete execution call trace.

The callgraph builder, shown on the right in Figure 1, consists
of an reference repository, a mapping engine, and a synthesizer. The
callgraphs builder analyzes the log files produced by the first two
components, identifies the multi-threaded implicit asynchronous
executions, fills in the missing links between threads, and outputs
the complete method call graph for each execution. The complete
method call graph can be used to construct more precise program
dependence.

3.1 Capturing Application Layer Method Calls
To capture the method calls in application layer, we use program
instrumentation to log the runtime execution trace. There are a
number of automatic tools for instrumentation on the source or
bytecode of Java programs[1]. Since the context of utilizing Run-
Droid is during debugging phase, it is natural to instrument the
program at source level. Additionally, we observe that bytecode
instrumentation techniques, such as the one Emma[3] uses, suffer
from the 64K reference limit[2]. Hence, the Preprocessor compo-
nent builds upon srcML [9], that converts Java source code into
xml-format, so that the methods are monitored during execution.

3.2 Recovering Method Calls between
Application and the Android Framework

The Interceptor component is built upon Xposed framework [5],
which intercepts messages passing between the application layer
and the Android framework. Interceptor logs each method calls
made between the two layers and associates them with the corre-
sponding method calls in application layer to produce a complete
method call trace. RunDroid maintains a list of methods that are of
interest, such as lifecycle methods and implicit callbacks, so that the
log files contain the method calls invoked during each execution.

3.3 Building Dynamic Call Graphs
In Android, whenever an application is launched, the system creates
a UI thread as the main thread. UI thread is responsible for drawing
the user interface including dispatching events to corresponding UI
widgets. To avoid blocking event dispatching and laggy responses
at the user interface, long-running tasks such as network accesses,
complicated processing, and others are done via worker threads.
Handlers are then used to pass messages between the UI threads
and the worker threads. Take the code snippet at Figure 2 as an
example, when the worker thread (left) needs to pass data to the

UI thread (right), we can invoke the methods of handler class to
send or receive messages. Hence, there is an implicit asynchronous
invocation between the method sendMessage() at the worker thread
and the method handleMessage() at the UI thread.

Such implicit asynchronous invocations can easily cause static
analysis to explode in matching methods that send and receive
messages, and produce large number of false positives. As such,
RunDroid addresses this challenge by matching these invocations
through dynamic execution traces, which results in the develop-
ment of three sub-components: Reference Repository component,
Mapping Engine component, Synthesizer component. The Reference
Repository component, built upon Neo4j[4], processes the log files
and stores the captured methods and their execution calls. TheMap-
ping Engine component, which is built upon soot [13], identifies
asynchronous invocation pairs from the log history, searches for
their corresponding instantiation classes, and stores these captured
multi-threaded method calls as “trigger” relation. The Synthesizer
component then integrates these trigger relations with the captured
execution calls into a complete execution call trace, and stores at
the Reference Repository.

4 EVALUATION
To illustrate how the dynamic call graphs built by RunDroid assists
fault localization techniques, we compare the estimation results
using the causal influence model with or without RunDroid. We
also present another case study with more complicated program
dependencies for demonstrating RunDroid’s visualization of dy-
namic call graph and data flows, providing visual assistance for
fault localization.

4.1 Effectiveness Study

Figure 3: Units in treatment group and control group with
their covariate values

To compare the effectiveness of causal influence model with
and without the dynamic call graphs provided by RunDroid, we
follow the experiment setup at [7, 8], use the original causal influ-
ence model (without RunDroid) as a baseline, and compare their
computed causal-effect estimates.

We take the motivating example as the subject program. Causal
influence model relies heavily on dependence relationship among
statements. With RunDroid, the asynchronized trigger relation
between Line 9 t.start() and Line 11 TaskThread.run(), is captured,
hence the predecessors of Line 13 are Lines {5, 8, 9, 13}, instead of
Line 13 only, which is the case of original causal influence model.
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(a) Overview

(b) Implicit method invocations

(c) Related object information Box
Figure 4: The RunDroid Output

Figure 3 shows the treatment units and the control units with their
associated test cases for Line 13. Specifically, Figure 3-(a) represents
the case of without RunDroid, and Figure 3-(b) represents the case
with RunDroid. The treatment units, which are test cases that cover
Line 13 are t2, t3, and t5; the control units, which are test cases
that do not cover Line 13 are t1 and t4. For target statement, we
use the vector of covariate to present the cover information of its
predecessor statements in a test case. In Figure 3-(b), the vector
⟨0,1,1,1⟩ means that for test case t2, only Line 5 is not covered, the
other three predecessor statements (Lines 8, 9, 13) are all covered.

Using the same equation from causal inference model, the causal-
effect estimates for the latter case (with dependence information
from RunDroid) are resulted differently. The estimate for Line 13
is (1+1)

2 −
(0+0)
2 = 1.0. The estimates for the other statements are

shown in Table 2, in the far right column.

Table 2: Comparing Results
t1 t2 t3 t4 t5 τ τ ′

1 void onClick(View v) {
2 num = getNumber(); 1 1 1 1 1 NA NA
3 if(v.getId() == R.id.btn1) { 1 1 1 1 1 NA NA
4 if( num == 0 ) { 0 1 1 0 1 0.67 0.67
5 num=1; 0 0 1 0 0 -1.0 -1
6 }
7 }
8 Thread t = createThread(v.getId()); 1 1 1 1 1 NA NA
9 t.start(); 1 1 1 1 1 0.67 0.67
10 }
11 TaskThread.run() {
12 if(v.getId() == R.id.btn1) { 1 1 1 1 1 NA 0.67
13 loadData(num); /* FAULT */ 0 1 1 0 1 0.67 1
14 }
15 }

0 1 0 0 1

4.2 Case Study of RunDroid’s Visualization
As mentioned, we understand that manual examination of data
flows during fault localization is unavoidable, RunDroid hence
provides visualization for: (1) The exact event sequences for each
test execution, instead of all possible ones as the static analyzers
do; (2) The execution call graphs, that are typically hard to capture
with static analyzers; (3) Related object information, that assist in
data flow analysis of static analyzers.

To demonstrate the effectiveness of RunDroid’s visualization
capability, we show here yet another case study with more com-
plicated program dependencies. Figure 4 shows the three types
of outputs from RunDroid. Figure 4-(a) highlights the overview
of event sequences initiated at the app’s UI thread; The captured
events are represented as nodes, and the purple link between nodes
represents their relationship, which denoted as “NEXT_ACTION”.
The color of nodes denotes if the method is defined at application
layer or the framework layer, labled as METHOD or FRAMEWORK,
respectively. The Activity lifecycle methods are shown at the up-
per part inside the dotted box. We zoom in the bottom box and
show it as Figure 4-(b), which shows the detailed execution calls.
Here we show the implicit method invocations, such as callbacks
and multi-threaded communications, that are captured during each
execution. RunDroid denotes application layer method calls or in-
tercepted method calls between application layer and framework as
“INVOKE” relations, and the implicit multi-threaded asynchronized
method calls as “TRIGGER” relations. To assist in data flow analy-
sis, RunDroid also captures and visualizes the object information
related to the methods invocations. Take the “TRIGGER” relation
shown at Figure 4-(b) as example and zoom in further, RunDroid
displays the related object information as Figure 4-(c).

5 CONCLUSIONS
In this paper, we have presented RunDroid, a tool that captures
the dynamic program dependences during each app execution, and
recovers the complete dynamic call graph. RunDroid is intended
to serve as a complementary to existing tools and techniques, in-
cluding static analysis tools and fault localization techniques; With
visualized execution history and more precise program dependence
information for each app execution, Rundroid assists developers
and tools with more precise causal-effect estimates for fault local-
ization.
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