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ABSTRACT
Embracing software-driven smart contracts to fulfill legal agree-
ments is a promising direction for digital transformation in the legal
sector. Existing solutions mostly consider smart contracts as simple
add-ons, without leveraging the programmability of smart contracts
to realize complex semantics of legal agreements. In this paper, we
propose iSyn, the first end-to-end system that synthesizes smart
contracts to fulfill the semantics of financial legal agreements, with
minimal human interventions. The design of iSyn centers around
a novel intermediate representation (SmartIR) that closes the gap
between the natural language sentences and smart contract state-
ments. Specifically, iSyn includes a synergistic pipeline that unifies
multiple NLP-techniques to accurately construct SmartIR instances
given legal agreements, and performs template-based synthesis
based on the SmartIR instances to synthesize smart contracts. We
also design a validation framework to verify the correctness and
detect known vulnerabilities of the synthesized smart contracts. We
evaluate iSyn using legal agreements centering around financial
transactions. The results show that iSyn-synthesized smart con-
tracts are syntactically similar and semantically correct (or within
a few edits), compared with the “ground truth” smart contracts
manually developed by inspecting the legal agreements.

CCS CONCEPTS
• Software and its engineering→ Source code generation; •
Computing methodologies→ Natural language processing.
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Smart Contracts; Program Synthesis; Natural Language Processing
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1 INTRODUCTION
The ever-growing digital transformation has shaped virtually every
type of business, such as online courses, online conferencing, online
medical and pharmaceutical systems, remote work forces, and so
on. Similarly, the legal sector is experiencing online transformation.
For example, DocuSign [32], a U.S. headquartered digital signature
company, now has over 85 million users worldwide. Meanwhile,
the discussion on whether smart contracts executed on blockchains
(or in general software code) can be treated as legally binding
contracts began several years ago [24, 25, 38, 54, 69]. Now the
answer starts to become clearer as some courts recently confirmed
that electronic data stored on blockchains met the authenticity and
integrity requirements of electronic evidence [72].

Despite the promise of smart contracts in operating legal agree-
ments, it is challenging for developers to write smart contracts that
capture the core logic of legal agreements. Legal agreements are
(i) large in size, often consisting of hundreds or even thousands
of sentences, and (ii) only a portion of the sentences that describe
the core semantics (e.g., financial transactions) are valuable to be
recorded or executed on blockchains. Thus, it is non-scalable and
error-prone to manually inspect these legal agreements to identify
blockchain-friendly sentences and subsequently converting them
into smart contract statements.

Existing research that extracts formal representations from soft-
ware documents [49, 51, 61, 73, 77] are not effective in processing
legal agreements because, unlike software documents (e.g., use cases
and API documents), legal agreements do not follow very specific
styles or presentations. The community also proposes several pre-
liminary protocols [2, 4] to augment traditional legal agreements
with smart contracts, by embedding an existing smart contract
on Ethereum into a specific section of the legal agreement that
is written using predefined templates and markup language (for
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instance, replacing the traditional payment section in an offer letter
agreement with a smart contract that periodically pays Ether to the
employee). However, these solutions treat smart contracts as simple
and external add-ons, while the key semantics in legal contracts
remain undigitized.

In this work, we push the boundaries of legal agreement digi-
tization by inventing a semi-automated framework iSyn that can
synthesize smart contracts to represent the core semantics in legal
agreements. To make the problem tangible, we first refine the scope
of legal agreements to focus on those centering around financial
transactions. Our empirical study also confirms that financial agree-
ments account for over 80% of the legal agreements in top-10 most
popular categories on Law Insider [33]. Second, because ambiguity
does exist in legal agreements (either due to natural languages or
even by design), we position iSyn as a semi-automated synthesis
framework that can reduce the otherwise significant developmental
efforts to simple selections.

We recognize several key challenges in realizing iSyn:
Challenge ①: due to the semantic gap between the legal agreements
written in natural languages and the smart contracts implemented
as software code, the search space of mapping hundreds or even
thousands of sentences in the legal agreements to various types
of statements in smart contracts is enormous. While natural lan-
guage processing (NLP) techniques [15, 41, 75] could be applied
to refine the scope of the sentences to be translated into program
statements, it is still far from feasible to solve the sentence-to-
statement-mapping problem by directly adopting existing program
synthesis techniques [14, 30, 74], which merely handle one or two
sentences and synthesize expressions with limited parameters for
SQL or other domain specific languages (DSLs).
Challenge ②: the second challenge is how to populate variable
names and conditions in the statements based on the entities in the
sentence and other relevant sentences. While existing named entity
recognition (NER) techniques [31, 55, 67, 81] could be applied to
extract entities from sentences, they are unable to fill the statements
with proper variables or/and conditions given these entities.
Challenge ③: the rich scenarios expressed in the legal agreements
pose another category of challenges. In particular, a legal agree-
ment describes not only financial transactions that should be exe-
cuted when certain conditions are met, but also describes various
abnormal situations (such as delay of deliveries and violation of
commitments) that often result in penalties or liability termina-
tions. Existing program synthesis designs [14, 30, 74] are limited
in expressing different contexts for program executions and the
statically generated programs cannot represent dynamic scenarios.

To overcome these challenges, iSyn invents three innovative
designs. First, we propose a novel intermediate representation (IR)
design, SmartIR, to bridge the gap between the natural language
sentences and smart contract statements. On the one hand, SmartIR
abstracts four types of intents that define the core transaction logic
in legal agreements. This abstraction, obtained after we reviewed
over 800 legal agreements with 1, 353, 843 sentences, is completely
data-driven. On the other head, SmartIR is underpinned by formal
grammar rules such that one SmartIR item (representing one finan-
cial transaction) is mapped to only a fixed set of software statements
in smart contracts. Each SmartIR item also contains one or multiple
slots to be filled with the critical terms or actions extracted from legal

agreements, such as payment entities and effective time. Therefore,
SmartIR drastically refines the search space for the complicated
sentence-to-statement mapping problem (addressing challenge ①).

Second, we design a novel NLP pipeline to populate the Smar-
tIR slots based on the entities and conditions extracted from legal
agreements. In particular, we adapt multiple NLP related techniques
(including synonym [44], Part-Of-Speech (POS) tag [23], Named En-
tity Recognition (NER) [31, 55, 67, 81], question-answering [19, 41])
in our synergistic pipeline to perform accurate intent classification
and slot filling to instantiate SmartIR instances. Afterwards, we
employ a template-driven smart contract synthesis to output con-
crete, blockchain-deployable smart contracts given these SmartIR
instances (addressing challenge ②).

Third, we design a validation framework to verify the correct-
ness of iSyn-synthesized smart contracts in representing various
situations defined in the legal agreements. To construct the vali-
dation cases, we exercise the conditions expressed by the SmartIR
instances, and performs exhaustive enumerations of feasible condi-
tions. By executing the synthesized smart contracts on these test
inputs, iSyn confirms that the contracts correctly represent the
dynamic semantics originally defined in the legal agreements. The
validation framework also includes an oracle contract to connect
the iSyn-synthesized smart contracts with key offchain data sources
(addressing challenge ③).
Evaluations.We conduct extensive evaluations on 86 representa-
tive legal agreements (with 129, 907 sentences) chosen from 10 most
popular legal agreement categories. Overall, the synthesized smart
contracts have on average 179 statements, and these synthesized
smart contracts are both syntactically and semantically similar to
the ground truth smart contracts developed by directly examining
the legal agreements. Our results show that the syntactic similar-
ities between the synthesized and ground truth smart contracts
are above 0.99. Meanwhile, the average percentage of semantically
correct functions in the synthesized contracts is ∼90%, where the
incorrectly synthesized smart contracts can be fixed with median
two edits. That is, iSyn converts the efforts in writing a 179-LoC
smart contract from a legal agreement to merely two edits on the
synthesized smart contract and one choice of payment entities to
resolve ambiguities.

In summary, this paper makes the following major contributions:
• A novel approach, iSyn, that synthesizes smart contracts from
legal agreements written in natural language, with minimum
human intervention required to settle the ambiguities existing in
legal agreements.

• An empirical study on 8, 029 legal agreements (1.35 million sen-
tences) to motivate the design of iSyn.

• A novel IR, SmartIR, to bridge the gap between the semantics
in legal agreements and smart contract statements, and a corre-
sponding NLP pipeline to populate SmartIR slots.

• A novel validation framework to verify the synthesized smart
contracts in representing various situations described in legal
agreements.

• An evaluation on a diversified set of legal agreements to demon-
strate the effectiveness of iSyn. We release the first large-scale
dataset on financial agreements with labels on their core transaction
logic in our project repository [3].
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Table 1: Empirical study results of the top-10 most popular legal agreement categories on Law Insider

Category Number Sentences Intents Other
Entity Online. Offline. Termination Formats Disclaimer Terminology Misc.

A 224 41219 10.07% 4.79% 7.85% 2.73% 21.65% 14.53% 5.35% 33.03%
CC 235 164829 5.14% 6.44% 10.41% 2.92% 25.33% 20.28% 6.51% 22.97%
EA 781 49096 2.59% 10.75% 7.50% 36.43% 6.57% 13.55% 3.90% 18.73%
IC 581 163071 4.75% 5.76% 12.71% 2.82% 26.49% 18.13% 5.02% 24.32%
JFA 1431 27103 16.73% 0.68% 2.88% 1.74% 58.60% 5.70% 0.60% 13.06%
PMA 1122 318799 2.47% 2.30% 7.91% 3.95% 22.77% 20.79% 8.20% 31.61%
RRC 1299 162329 5.85% 2.26% 11.09% 2.58% 24.84% 18.31% 7.20% 27.88%

SECPA 283 131331 3.46% 6.80% 13.34% 19.68% 6.05% 20.09% 6.29% 24.29%
TA 578 64995 5.71% 6.36% 11.35% 3.08% 22.33% 17.11% 6.56% 27.50%
UA 1495 231071 23.10% 23.56% 28.11% 5.38% 4.07% 4.13% 9.32% 2.33%

Total/Avg 8029 1353843 7.99% 6.97% 11.32% 8.13% 21.87% 15.26% 5.89% 22.57%

2 BACKGROUND AND MOTIVATION STUDY
2.1 Blockchain and Smart Contracts
Blockchain [45] lets mutually untrusted parties run a consensus
protocol to agree on the trading transactions and maintain a shared
ledger of data. Besides enabling cryptocurrencies (e.g., Bitcoin),
blockchain supports decentralized execution of general-purpose
programs, called smart contracts [6]. These smart contracts are
written in turing-complete programming languages such as Solid-
ity [5] in Ethereum [18], and its correct executions are enforced by
using the blockchain’s consensus protocol. Thus, the programma-
bility and the security of smart contracts powers a wide range of
decentralized applications (dApps).

2.2 Empirical Study of Legal Agreements
To understand the core semantics logic in legal agreements, we
conduct an empirical study on the top-10 most popular categories
of legal agreements collected from the Law Insider [33]. Our study
subjects include 8029 legal agreements (with over 1.35 million sen-
tences) from the following ten categories: agreement (A), credit
contract (CC), employment agreement (EA), indenture contract
(IC), joint filling agreement (JFA), plan of merger agreement (PMA),
registration right agreement (RRA), security purchase agreement
(SECPA), trust agreement (TA) and underwriting agreement (UA).

We find that that 82.17% of these legal agreements (9 out of
the 10 studied categories) center around financial transactions. The
pervasiveness of financial agreements fundamentally motivates
us to embrace blockchains (or more precisely smart contracts) in
our design, which are experiencing rapid adoption in the finance
sector (such as the decentralized finance, DeFi). Further, we iden-
tify four types of sentences that are essential to describe financial
transactions. Following the NLP community convention, we use
four intents, OnlineStateTransfer , Entity , OfflineDelivery , and Termi-
nation, to represent these four types of sentences. In particular, the
core transactional logic can be described via a set of OnlineState-
Transfer sentences, where one OnlineStateTransfer sentence may
be associated with certain properties or/and conditions, including
the relevant entities (Entity), offline deliveries of physical goods
(OfflineDelivery), and termination conditions (Termination).

We train a classification model of these intents using our curated
benchmark (§ 4.4) based on over 800 labeled legal agreements.
We then apply the model on these legal agreements and compute

the sentence distribution of different intents, as shown in Table 1.
The results show that on average the sentences classified as one of
the four intent types account for a significant portion (35.78%) of
sentences in a financial agreement. We also reviewed the remaining
sentences (classified as “Other” in Table 1) to understand how they
may contribute to financial transactions. We find out that these
sentences mainly describe formats (i.e., headers/titles), disclaimers
(e.g., “This Agreement will be governed by ... the State of Nevada”),
terminologies, and legal miscellaneousness, which are difficult to
be represented as software code. Thus, it is not our goal to completely
replace the legal agreements using iSyn. Instead, iSyn focuses on
representing the core transactional logic of the financial agreements
as smart contracts, hoping to reduce the commercial frictions and
transactional costs while operating these financial agreements.

3 DESIGN OF ISYN
3.1 Overview
Figure 1 shows the overall architecture of iSyn. The design of iSyn
centers around SmartIR, a key middleground bridging the seman-
tic gap between legal agreements and smart contracts. Instead of
manually examining legal agreements, iSyn constructs SmartIR
instances by automatically extracting the core logic from the legal
agreements, using a holistic pipeline that consolidates multiple
NLP techniques. This synergistic approach achieves accurate intent
classification and slot filling for SmartIR instantiation, and outper-
forms these individual NLP designs when applied alone. Given these
SmartIR instances, iSyn proposes a template-driven smart contract
synthesis to output predictable blockchain-deployable smart con-
tracts. This allows us to build a generic validation framework that
can enumerate the branches of the synthesized smart contract with
a comprehensive set of validation cases. This not only ensures the
correctness of the contract, but also can provide simulated results
to showcase various termination cases when necessary.

3.2 An End-to-End Example
Figure 2 shows the overview of iSyn using an end-to-end example.
Intent Definition. Financial agreements written by legal profes-
sionals are not originally meant to be translated into software code.
Thus, the very first step in iSyn is to decide the proper program-
ming model of legal agreements. We abstract four types of intents
in our model to represent the core transaction logic in the legal
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...
OnlineStateTransfer: [{
    TimeConstraint: {
        operator: "<=",
        leftOprand: "now",
        rightOprand: CloseTime
    };
    DeliveryConstraint: true;
    (TimeContraint && DeliveryConstraint) 
 -> Payment {
          From: ["Lanxess Corporation"];
         To: ["BioAmber Inc."];
         Price: { Amount: "9999910", 
   Unit: "USD" };
          };   
}];
...

SmartIR Instantiation Smart Contract
Validation

Oracle Contract
Datafeed 

Figure 1: The architecture of iSyn. iSyn first classifies and identifies four types of transaction intents from the legal agreements.
To specify these intents, it then uses a dedicated slot filling approach to instantiate SmartIR. Afterwards, iSyn synthesizes
blockchain-executable smart contract by tuning the abstract syntax tree (AST) of a smart contract template based on the given
SmartIR instance. At the same time, iSyn extract operation constraints from the SmartIR to construct validation cases.

STOCK PURCHASE AGREEMENT

 THIS STOCK PURCHASE AGREEMENT
(this “Agreement”) is made and entered into on
February 6th, 2012 (the “Execution Date”) by
and among BioAmber Inc., a Delaware
corporation (the “Company”), and Lanxess
Corporation, a Delaware corporation (the
“Purchaser”).

 /*...Other sentences...*/

 At the Closing (as defined below), the
Company shall sell and issue to the Purchaser,
and, subject to the terms and conditions set forth
herein, the Purchaser shall acquire and purchase
from the Company, 10,030 Securities (as defined
below) upon payment by the Purchaser of a
purchase price of Nine Million Nine Hundred
Ninety-Nine Thousand Nine Hundred and Ten US
Dollars (US $9,999,910) (the “Purchase Price”),
payable as set out in Section 2 of this Agreement.

...

Entity: {
    SellerNames: ["BioAmber Inc."];
    BuyerNames: ["Lanxess Corporation"];
};
CloseTime: "February 6th, 2012";

...

OnlineStateTransfer: [{
    TimeConstraint: {
        operator: "<=",
        leftOprand: "now",
        rightOprand: CloseTime
    };
    DeliveryConstraint: true;
    (TimeContraint && DeliveryConstraint) 
-> Payment {
         From: ["Lanxess Corporation"];
        To: ["BioAmber Inc."];
        Price: { Amount: "9999910", 
Unit: "USD" };
         };   
}];

...

/** */
function pay() public payable {
    /** */
    require(msg.sender == buyer[0]);
    uint currentTime = oracle.getTime();
    require(currentTime <= CloseTime);
    uint256 currentPrice = oracle.getPrice();
    uint256 price = 9999910;
    price = price / currentPrice;
    require(msg.value == price);
    /** */
}

/** */

function payRelease() public {
    require(msg.sender == buyer[0]);
    uint currentTime = oracle.getTime();
    require(currentTime <= CloseTime);
    require(purchaseBuyerConfirmed[0]);
    require(purchaseSellerConfirmed[0]);
    /** */
    seller.transfer(pricePayedByBuyer[0]);
    /** */
}
/** */

...
PaymentRoleCons: true,
PaymentTimeCons: true,
PaymentDeliveryCons: true,
PaymentPriceCons: true,
...

Legal 
Agreement 

SmartIR
Instance 

Smart Contract 
in Solidity 

Validation Case 
& Validation Data Feed 

msg.sender 
msg.value 

token_price 
time 

delivery_status

Interaction
after Deployment 

operation constraint
config

direct  
transaction input

oracle contract 
data

validation process

deployed  
smart contract 

contract-related
entity 

trusted oracle 
data feed 

msg.sender: 0xXX... 
msg.value: XXX...

token_price: XXX... 
time: Jan 5th, 2012 
delivery_status: true

Figure 2: An end-to-end example of smart contract synthesis, validation and deployment using iSyn.

agreements, as driven by our empirical study. In the example shown
in Figure 2, we highlight a payment intent between two entities
once certain conditions are satisfied.
SmartIRConstruction. SmartIR is our critical design to bridge the
gap between the financial agreements written in natural languages
and smart contracts written in programming languages. On the one
hand, the intents expressed in legal agreements are automatically
extracted in structured SmartIR instances, underpinned by rigor-
ous grammar rules. On the other hand, the formal specification
of SmartIR instances provides a well-defined scope for program
synthesis. In this example, the payment intent is translated into a
SmartIR item called OnlineStateTransfer with two constraints rep-
resenting the conditions defined in the legal agreement. Internally,
the above procedure is accomplished using our synergistic pipeline
that unifies multiple NLP techniques.
SmartIR Ambiguity Resolution with Knobs. To embrace ambi-
guities in legal agreements, for each SmartIR item, iSyn provides
the top-5 candidates sorted based on the confidence scores, and let
stakeholders choose a more appropriate candidate using our knob.
Once the SmartIR instance is agreed, the subsequent process re-
quires no human intervention. Note that the top-1 candidate (90%+
change of being correct) is by default presented in the concrete
SmartIR instance generated by iSyn.
Smart Contract Synthesis. The final blockchain-executable smart
contracts are synthesized based on the SmartIR instances, prede-
fined smart contract templates, and optional user inputs. A template

essentially defines the “backbone” of the smart contract in form
of abstract syntax tree (AST). The synthesis process then modifies,
populates, or trims certain nodes of the AST, based on the SmartIR
instances, to eventually output the synthesized smart contract. We
employ a template-driven contract synthesis for the predictabil-
ity of the final smart contract. The predictability facilitates the
correctness check on the contract.

In this example, the SmartIR items are realized by two functions
in Solidity, where the critical constraints are expressed via the
require statements. The contract also relies on oracles to obtain
authenticated off-chain data, such as the delivery date of physical
goods associated with the payment.
Smart Contract Validation. We build a generic validation frame-
work to verify the correctness of iSyn-synthesized smart contracts
and perform automated vulnerability checks on the synthesized con-
tracts. This framework generates comprehensive validation cases to
cover all possible execution branches determined by the operation
constraints extracted from the SmartIR instances. In this example,
the price value and the payment time are two critical operation
constraints validated by the framework.
Post-deployment Interaction.The stakeholders of the legal agree-
ments can interact with the post-deployed smart contracts as typical
Ethereum smart contracts. In this example, the payer first deposits
its payment into the smart contract by constructing a transaction
to the pay interface. Once the payment conditions are satisfied, the
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money is released to the payee by calling the payRelease interface
using the data provided by the trusted oracle.

3.3 Intent Classification
Based on our empirical study, together with our understanding
about smart contracts, we abstract four types of intents to represent
the core transaction logic in the financial agreements. In particular,
the Entity intent defines the participants or stakeholders involved
in the legal agreement. The OnlineStateTransfer (OfflineDelivery)
intent covers operations with (without) detailed onchain represen-
tations, and Termination defines various contract ending conditions.
Concretely, our current design of OnlineStateTransfer supports pay-
ment (the most common operations we observe in financial agree-
ments), property-backed Non-Fungible Token transfers (the recent
trend of asset management), and using state published by certified
organizations (e.g., supporting the Web3.0 innovations [43]). The
OfflineDelivery now supports oracles [17] for collecting authenti-
cated offchain data. The Termination intents have three categories:
termination upon offline deliveries, explicit expiry date, and other
issues (for instance ending the employment at will).

Given this intent model, we fine-tune a RoBERTa [11] classifier,
the state-of-the-art NLP transformer trained using the public read-
ing comprehension dataset like SQuAD2 [19], using own labeled
data to identify the sentences related to these transaction intents.

3.4 SmartIR Design
To formally represent the intents in the intent model, we design
an intermediate representation (IR), SmartIR. The BNF grammar
of SmartIR is shown in Grammar 1. SmartIR mainly consists of
four parts that are mapped to the four types of intents: ⟨EntityDef⟩,
⟨OfflineDeliveryDef⟩, ⟨OnlineStateTransferDef⟩, and ⟨TerminationDef⟩.
Additionally, SmartIR uses ⟨TimeDef⟩ to define the effective time,
close time, and the expiry time defined in the contract.

As shown in Figure 1, SmartIR is capable of representing com-
plex semantics (such as the constraints in OnlineStateTransfer and
Termination intents), as well as the dependencies among differ-
ent intents. For example, the entities defined in the ⟨EntityDef⟩
intents are later referenced in the ⟨OnlineStateTransferDef⟩ intent,
the dates defined in the ⟨TimeDef⟩ intents are referenced in vari-
ous ⟨TimeConstraintDef⟩ intents, and the boolean values defined
in the ⟨OfflineDeliveryDef⟩ can be used as the preconditions for
the ⟨OnlineStateTransferDef⟩ intent. We next explain the SmartIR
grammar rules in detail.
Entity Definitions. ⟨EntityDef⟩ defines all entities extracted from
the Entity intents, such as purchasers (investors) and companies
(sellers) in a typical stock purchasing agreement. Concretely, ev-
ery ⟨EntityNamesDef⟩ declares all the entity names belonging to
the same entity type, and puts them in ⟨EntityNamesDefList⟩. En-
tity names are used to uniquely identify entities during the smart
contract synthesis process.
OfflineDelivery Definitions. The OfflineDelivery intents define
the operations without detailed onchain representations, such as
the delivery of written notice, certificate, receipt or document. For
simplicity, ⟨DeliveryConstraintDef⟩ allows a boolean variable or a
string to indicate whether offline operations are necessary, without

⟨SmartIR⟩ ::= ⟨EntityDef ⟩ (⟨TimeDef ⟩)+ (⟨OfflineDeliveryDef ⟩)?
⟨OnlineStateTransferDef ⟩ (⟨TerminationDef ⟩)?

⟨ContractCategoryDef ⟩ ::= ‘ContractCategory’ ‘:’ ⟨string⟩ + ‘;’

Entity:
⟨EntityDef ⟩ ::= ‘Entity:’ + ‘{’ ⟨EntityNamesDefList⟩ ‘}’ + ‘;’
⟨EntityNamesDefList⟩ ::= (⟨EntityNamesDef ⟩ ‘;’)+
⟨EntityNamesDef ⟩ ::= ⟨EntityType⟩ ‘:’ ‘[’ ⟨EntityName⟩ (‘,’ ⟨EntityName⟩)* ‘]’
⟨EntityType⟩ ::= ⟨string⟩
⟨EntityName⟩ ::= ⟨string⟩

Time Constraint:
⟨TimeDef ⟩ ::= ⟨TimeLabel⟩ ‘:’ ⟨string⟩ ‘;’
⟨TimeLabel⟩ ::= ‘EffectiveTime’ | ‘CloseTime’ | ‘ExpiryTime’
⟨TimeConstraintDef ⟩ ::= ‘TimeConstraint’ ‘:’ ⟨BinaryOperation⟩
⟨BinaryOperation⟩ ::= ‘{’ ⟨BinaryOperand⟩ ⟨BinaryOperator ⟩ ⟨BinaryOperand⟩ ‘}’
⟨BinaryOperand⟩ ::= ⟨BinaryOperation⟩ | ⟨string⟩
⟨BinaryOperator ⟩ ::= ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘==’ | ‘&&’ | ‘||’ | ‘+’ | ‘-’ | ‘*’ | ‘/’

OfflineDelivery:
⟨OfflineDeliveryDef ⟩ ::= ‘OfflineDelivery’ ‘:’ ‘{’ ⟨DeliveryConstraintDef ⟩ ‘}’

‘;’
⟨DeliveryConstraintDef ⟩ ::= ‘DeliveryConstraint’ ‘:’ ⟨bool⟩ | ⟨string⟩ ‘;’

OnlineStateTransfer:
⟨OnlineStateTransferDef ⟩ ::= ‘OnlineStateTransfer’ ‘:’ ‘[’ (⟨PaymentDef ⟩)+ ‘]’

‘;’
⟨PaymentDef ⟩ ::= ‘{’ ⟨PaymentContraintDef ⟩ ‘->’ ⟨PaymentFunctionDef ⟩ ‘}’

‘;’
⟨PaymentContraintDef ⟩ ::= ‘(’ (⟨TimeConstraintDef ⟩)? (‘&&’)?

(⟨DeliveryConstraintDef ⟩)? (‘&&’)? (⟨OtherConstraintDef ⟩)?
‘)’

⟨PaymentFunctionDef ⟩ ::= ‘Payment’ ‘{’ ⟨SourceDef ⟩ ‘,’ ⟨DestinationDef ⟩ ‘,’
⟨PriceDef ⟩ ‘}’

⟨SourceDef ⟩ ::= ‘From’ ‘:’ ⟨EntityName⟩
⟨DestinationDef ⟩ ::= ‘To’ ‘:’ ⟨EntityName⟩
⟨PriceDef ⟩ ::= ‘Price’ ‘:’ ‘{’ ‘Amount’ ‘:’ ⟨integer ⟩ ‘,’ ‘Unit’ ‘:’

⟨string⟩ ‘}’

Termination:
⟨TerminationDef ⟩ ::= ‘Termination’ ‘:’ ‘{’ ⟨TerminationConstraintDef ⟩ ‘}’ ‘;’
⟨TerminationConstraintDef ⟩ ::= (⟨TimeConstraintDef ⟩)? (‘||’ ⟨DeliveryConstraintDef ⟩)?

(‘||’ ⟨OtherConstraintDef ⟩)*
⟨OtherConstraintDef ⟩ ::= ⟨bool⟩

Grammar 1: BNF grammar of SmartIR

further specifying detailed steps and constraints for these opera-
tions. In the smart contract synthesis process, we support using
either smart contract oracles [78, 79] or file integrity validation
functions to fulfill this definition.
OnlineStateTransfer Definitions.We use the payment operation
as an example of the OnlineStateTransfer intents. We allow multi-
ple payments defined in ⟨OnlineStateTransferDef⟩ to support the
case where a financial agreement involves multiple buyers, sellers
or different payment stages. Each payment operation is defined
via ⟨PaymentDef⟩, which consists of the precondition for the pay-
ment (⟨PaymentConstraintDef⟩) and the payment operation details
(⟨PaymentFucntionDef⟩). The payment precondition may consist
of a time constraint (e.g., a closing date) or a delivery constraint
(e.g., receiving a file), and only when all defined constraints are
satisfied the payment will be executed. A ⟨PaymentFucntionDef⟩
must be declared with a three-element tuple: the pay action source
(⟨SourceDef⟩), destination (⟨DestinationDef⟩), and the price payed
(⟨PriceDef⟩). Other types of OnlineStateTransfer functionality de-
fined in our model (e.g., property-backed NFT transfers and using
certified offchain states) can be supported similarly by extending
the grammar definitions.
Termination Definitions. Typical termination conditions of finan-
cial agreements fall into three categories: termination triggered by
offline delivery, agreement expiration, or other customized condi-
tions (e.g., employment termination at will). SmartIR presents these
conditions using three types of constraints: ⟨TimeConstraintDef⟩
for representing the constraints related to the dates defined in
⟨TimeDef⟩ (e.g., the expiry date), ⟨DeliveryConstraintDef⟩ for repre-
senting the offiline delivery constraint, and ⟨OtherTerminationDef⟩
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Table 2: NLP techniques used for each intent type

Intent Type NLP Techniques

Entity QA, NER, Rules
OnlineStateTransfer QA, NER, Synonym, POS
OfflineDelivery Synonym, POS
Termination NER, Synonym, POS

for representing other constraints. If any of the conditions is de-
fined in the Termination intents, SmartIR sets the corresponding
definition to be true. Eventually, if any of these defined constraints
are evaluated to 𝑡𝑟𝑢𝑒 , the contract will be considered as terminated.
TimeConstraintDefinitions.Time-related information contained
in a financial agreement often serves as constraints or triggers for
certain operations. For example, a time constraint with the ‘Clos-
eTime’ label defines the deadline for a payment operation and its
associated offline deliveries, while time constraints with the ‘Effec-
tiveTime’ label and the ‘ExpiryTime’ labels define the life span of
an agreement. In addition, time limits are uniformly expressed as
nested binary operations to enable time comparison.

3.5 SmartIR Instantiation
iSyn instantiates SmartIR instances based on the critical informa-
tion extracted from the legal agreements using our synergistic NLP
pipeline. Based on the intent type, iSyn adopts different combina-
tions of NLP techniques to extract the information from the text,
as summarized in Table 2.
Entity. To instantiate the SmartIR statements for Entity intents,
iSyn extracts name entities from the financial agreements. These
name entities represent the stakeholders of the agreements, such
as parties or organisations, and their corresponding attributes (i.e.,
whether a party is a payer or payee). iSyn focuses on two types
of entities for a legal agreement: the receiver and sender of On-
lineStateTransfer , which are the major participants of the financial
transactions. To detect named entities, iSyn builds a RoBERTa ques-
tion answering model [19, 41], rather than using Named Entity
Recognition (NER) as they still face the challenge of mapping these
entities to the slots in the SmartIR statements (e.g., how to distin-
guish payers and payees). Unlike NER, the question-answering (QA)
model provides an answer for a given question, and iSyn can extract
entities using the questions related to entity attributes, e.g., “who is
seller in this contract?”. Particularly, using such kind of questions
in a QA model is not sensitive to specific keywords, because the
model can identify the synonym group automatically. To capture
the different nouns used to represent entities, iSyn trains a QA
model for each category of legal agreements. For each category,
we fine-tune a model using our constructed benchmark dataset
that consists of 100 Entity sentences collected from the 100 legal
contracts in the same category.

Even so, due to the differences of writing styles, the QA model
still face challenges in recognizing some entities. To address this
problem, we synergistically combine QA, NER, and semantic rules
to improve the accuracy of entity recognition. Specifically, iSyn
first filters out sentences that are either too short or too long, as
they mostly do not describe the receiver and the sender entities.
The length limit is based on the statistical length of sentences in the

labeled dataset. iSyn then filters out sentences that are describing
legal terminologies rather then entities using keywords such as
“mean”. Finally, iSyn uses the entities found by the QA model to
create the receiver and the sender entities; if the QA model fails to
do so, we fall back to the NER results for creating the entities.
Ambiguity in Entity Recognition. Legal contracts often contain
(even intentionally) ambiguous sentences when defining entities. To
work around such ambiguity, iSyn also provides the top-𝑘 entities
returned by the QA model and corresponding confidence scores.
The confidence scores are computed using the sum of probabilities
assigned by the QA model for each returned entity. Given the con-
fidence scores of the top-𝑘 entities, iSyn automatically adopts the
extracted entities if the confidence scores are high while initiating
offline manual reviews otherwise [76].
Offline Delivery. To instantiate the SmartIR items for OfflineDe-
livery intents, iSyn uses a rule-based approach to identify the Of-
flineDelivery behavior between the signed entities in the legal agree-
ment. If matches are found, a corresponding SmartIR item for the
OfflineDelivery is generated with the nouns being the name for the
⟨DeliveryConstraintDef⟩ statement; otherwise, the OfflineDelivery
sentence is ignored.
OnlineStateTransfer and Termination. To construct SmartIR
items for OnlineStateTransfer and Termination intents, iSyn first
extracts the date information that may be used in the preconditions
or the definitions of these intents. Towards this end, iSyn applies
NER to detect the entities labelled with the DATE tag for date
information, and the entities with labelled theMONEY tag for price
information. Since the OfflineDelivery intents may be used as the
preconditions for the OnlineStateTransfer and Termination intents,
iSyn also detects whether offline deliveries appear in these intents
using the same rule-based approaches described above. If found, a
precondition of the offline deliveries is added. Finally, iSyn uses the
sender and the receiver entities extracted from the Entity intents
as the payer and payee of the OnlineStateTransfer intents.

3.6 Smart Contract Synthesis
iSyn takes the SmartIR instances as input and employs a template-
based synthesis protocol to synthesize to synthesize the smart
contract deployable on blockchains.We currently use Solidity (0.5.x)
as the target smart contract programming language. Yet, since
SmartIR is language-agnostic, our synthesis protocol is applicable
to other languages.
Smart Contract Template Design. A Solidity smart contract
is a collection of functions and state variables (declared using
storage). In the smart contract template, we program the ⟨Entity⟩
and ⟨TimeConstraintDef⟩ definitions as state variables and initial-
ize them in the constructor. We convert the date strings in the
⟨TimeDef⟩ definitions as 𝑢𝑖𝑛𝑡256 Unix timestamps for compari-
son purpose. We next describe the template design for the fol-
lowing SmartIR definitions: ⟨PaymentDef⟩ (the concrete example
of ⟨OnlineStateTransferDef⟩), ⟨OfflineDeliveryDef⟩ and ⟨Termina-
tionDef⟩. The complete template is shown in our technical re-
port [3].

Each ⟨PaymentDef⟩ operation is mapped to two functions, pay
and payRelease. In the pay function, the fund intended to be sent
from a payer account to a receiver account is staked temporarily in
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the contract account and locked. The payer account and the receiver
account of the pay function, corresponding to ⟨SourceDef⟩ and
⟨DestinationDef⟩, are restricted by the require statement. The funds
currently stored in the contract account are recorded using state
variables. The payRelease function is invoked by the payer to release
the fund staked in the contract to the receiver. For the precondition
of the payment operation defined in the ⟨PaymentConstraintDef⟩,
our smart contract template provides the payConfirm function for
the payer and the receiver to confirm if the preconditions are satis-
fied. The confirmation results are recorded as state variables and
checked using the require statements in payRelease. Additionally,
the price paid is specified using a local variable, which is consistent
with the amount sent by the payer in the pay function. The time
constraints of a payment operation are also evaluated using the
require statement.

For ⟨OfflineDeliveryDef⟩ definitions, we provide the uploadFile-
Hash function to store important string information (such as file
content hashes) in a mapping state variable. This enables a wide
range of dispute resolution mechanisms designed based on the
commit-and-reveal primitive.

The template has different types of functions to realize different
types of ⟨TerminationDef⟩ definitions. In particular, terminateByDe-
livery and terminateConfirm are defined for ⟨DeliveryConstraintDef⟩.
Additionally, the terminateByDelivery function is also restricted by
time constraints since deliveries are often associated with times
in legal agreements. Similarly, the function terminateByExpiry de-
signed for ⟨TimeConstraintDef⟩ is restricted by comparing the cur-
rent timestamp with the expiry time, while the function terminate-
ByOther designed for ⟨OtherConstraintDef⟩ relies on the offchain
feeds from the oracles to decide the proper next steps.

The complete mapping between the SmartIR items and Solidity
state variables, local variables, and functions in our smart contract
template are deferred to the technical report [3].
Template Instantiation. To instantiate the template and generate
the concrete smart contract, iSyn first uses a Solidity parser built
upon ANTLR4 [50] to obtain the abstract syntax tree (AST) of the
smart contract template and transform this AST based on the input
SmartIR instance to generate a target AST. In particular, based on
the SmartIR instance, iSyn decides whether an AST node needs to
be modified (if the SmartIR defines a customized logic), or trimmed
(if the corresponding boolean in SmartIR is evaluated as false), or
retained the same if otherwise. For nodes requiring modifications
(usually representing functions), iSyn updates the function body
accordingly, for instance, by enforcing time constraints as require
statements or specifying proper value for a local variable (e.g., the
price amount in the pay function). We also ensure that the synthesis
will add proper security checks to eliminate vulnerabilities, such as
integer overflow and reentrancy bugs [1, 22, 68].

The contract synthesis can also take as inputs user specified
information that does not originally appear in legal agreements.
Typical user inputs include blockchain accounts, the front-end
contract address of Oracles [78], and the concrete certified state
publishers [43]. The stakeholders, upon mutual agreement, could
also overwrite certain SmartIR terms using directly provided inputs.
Program Predictability. One of the primary reasons for using pre-
defined templates to drive smart contract synthesis is to ensure the

predictability of the final smart contracts. This allows iSyn to design
proper oracle interfaces that are compatible with the synthesized
contracts Another benefit is that it facilitates the correctness check
of the synthesized contracts based on the “ground truth” contracts
developed by engineers following a programming style similar to
that of the template, as we will discuss in § 4.1.

3.7 Smart Contract Validation
To ensure that the functionality of a synthesized smart contract
correctly conforms to its SmartIR, we design a contract validation
module in iSyn. The validation framework has two components:
an oracle contract for feeding vital data to the synthesized smart
contracts and a validation case generator for exploring various oper-
ation constraints in the contracts. Furthermore, we apply existing
vulnerability detection tools [65, 68] to ensure that known vulnera-
bilities are eliminated on the synthesized contracts.

The oracle contract provides necessary external data sources
for the smart contract, such as the current time, realtime token
prices, as well as other external states that dictate whether certain
constraints are satisfied or not. We design the oracle interfaces to
be compatible with the expected formats of the iSyn-synthesized
smart contracts (thanks to the template-driven contract synthesis
protocol). These oracle interfaces can be easily extended to include
more external data sources based on the needs of the studied legal
agreements.

The validation case generator generates validation cases for a
smart contract based on its SmartIR. In particular, the generator
first parses SmartIR to extract all the operation constraints using an
explicit mapping from the SmartIR items to the constraints. Similar
to test generation via symbolic execution [26, 36, 59], the genera-
tor collects the constraints in a contract and uses the conjunction
of these constraints, called path condition, to generate inputs for
validating the smart contract. To obtain a new path that represents
a different scenario, one of the constraints is negated to create a
new path condition. To achieve the complete coverage of all possi-
ble scenarios, the generator finds path conditions that cover both
the true and the false branches of each constraint. Different from
path conditions in testing a program, the constraints in our path
conditions are mutually independent, and thus finding a valida-
tion input that satisfies the path conditions is straightforward. Our
empirical observation also finds that legal agreements rarely have
constraints depending on each other. In practice, the validation
inputs are crafted as function parameters or oracle data to fulfill
certain operation constraints based on the path conditions. Note
that we place comprehensive assertions in the validation cases to
ensure that expected transaction failures can be captured.

4 EVALUATION
We built iSyn in ∼6,000 lines of code (Python and Javascript). Our
evaluations aim to answer the following research questions:
• RQ1: How effective is iSyn in synthesizing smart contracts from
legal agreements?

• RQ2: How effective is iSyn in translating the core transaction
logic in legal agreements into SmartIR instances?

• RQ3: How effective is iSyn in classifying intent related sen-
tences?
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Figure 3: Synthesized lines of code for each contract in the
evaluation set (including inserted, updated and deleted lines
based on the smart contract template)

• RQ4: How effective is iSyn in validating various constraints
defined in the legal agreements?

4.1 Evaluation Setup
Evaluation Subject.Weuse the legal agreements in Law Insider [33]
as our evaluation subjects. As shown in Table 1, we first collected
8, 029 legal agreements from the top-10 most popular categories.
We excluded the categories of Joint Filling Agreement, Agreement,
Underwriting Agreement since they are not centric to financial trans-
actions. Among the remaining 4, 879 contracts, we use the following
approach to obtain the evaluation agreements. First, we select the
legal agreements with the most OnlineStateTransfer-related sen-
tences, and manually review them to exclude those with certain
problems (e.g., the contracts appeared in the same download file or
the agreements assigned to the wrong category after reviewing the
content). In total, we obtain 64 legal agreements from 7 categories.
We further include another 22 contracts (referred to as mini-bench)
that include sentences for all the four types of intents. In total, the
evaluation dataset consists of 86 contracts with 129, 907 sentences,
as summarized in Table 3. We applied iSyn to synthesize smart
contracts (denoted as 𝑃𝑠 ) from these legal agreements. To evalu-
ate how iSyn minimizes developer efforts, the synthesized smart
contracts and their SmartIR used in RQ1 and RQ4 are the top-1
candidates automatically generated by iSyn without human inter-
ventions. As shown in Figure 3, the average LoC synthesized by
iSyn to fill the slots of the template is 29, and the average total LoC
of the synthesized smart contracts is 179 (including the template).
Ground Truth Smart Contracts.Wemanually create the “ground
truth” smart contracts (denoted as 𝑃𝑔), for all the 86 legal agree-
ments. We first inspected the legal agreements and identified the
sentences related with the four types of intents. We then analyzed
these intents to construct the core transaction logic, and develop a
smart contract to represent the logic following the smart contract
templates used in iSyn. We also invite multiple graduate students in
our law school to help us build the ground-truth SmartIR dataset. To
minimize the manual efforts and avoid tedious negotiation rounds,
we did not let them compose the SmartIR from scratch. Instead, they
read the legal agreements (each agreement read by two persons) in
our evaluation dataset and manually reviewed the automatically
generated SmartIR for us.We then further reviewed their comments
and correct our ground truth. Typical corrections required by legal
experts are about sender and receiver of OnlineStateTransfer .

Ground Truth Validation Cases. We also construct the “ground
truths” validation cases to evaluate the quality of validation cases
generated based on SmartIR instances. Towards this end, we, as-
sisted by a group of legal experts, read all the 86 legal contracts
in the evaluation set thoroughly and manually identify the opera-
tion constraints that should be used to construct the ground-truth
validation cases. For consistency, we use the same set of operation
constraints in both ground-truth validation cases and SmartIR-
generated validation cases.
Evaluation Metrics. Due to the inherent ambiguity of legal agree-
ments, 𝑃𝑠 will be inevitably different from 𝑃𝑔 . As long as these
differences are trivial (i.e., 𝑃𝑠 ∼ 𝑃𝑔), developers can adopt these
smart contracts with minor edits. Thus, we measure the effective-
ness of iSyn in minimizing developer efforts by measuring the
similarity between 𝑃𝑠 and 𝑃𝑔 using two metrics.

The first metric measures the structural similarity between 𝑃𝑠
and 𝑃𝑔 . In particular, we use the similarity of program characteristic
vectors defined in DECKARD [34] (referred to as vector similarity)
as our metric. The core task of DECKARD is to construct program
characteristic vectors. Towards this end, it first builds ASTs for the
compared programs without considering detailed AST node values.
Then it records occurrence counts of the relevant AST nodes that
are essential to the tree structure, such as assignments, increments,
arrays and condition expression nodes. These information is then
recorded in the ordered dimensions of the characteristic vectors. As
such, the similarities between the vectors of 𝑃𝑠 and 𝑃𝑔 can represent
the similarity between 𝑃𝑠 and 𝑃𝑔 in terms of structure and code-
quantity. We use the cosine value for the vectors of 𝑃𝑠 and 𝑃𝑔 to
quantify their similarities.

The secondmetric measures the semantic correctness of 𝑃𝑠 when
compared to 𝑃𝑔 . Unlike traditional program synthesis tasks, in
which the target program is as short as a SQL request or a shell
script, iSyn synthesizes a holistic smart contract with complex
programming logic. Thus, we prefer finer-grained function-level
correctness checks when validating the semantic correctness of
the synthesized contracts. Additionally, for incorrect functions, we
measure how many edits are required to fix them. The definition
of an edit is inspired by GumTreeDiff [21], i.e., each edit (or edit
action) means updating, deleting, adding or moving a single node
of the program AST.

4.2 RQ1: Overall Effectiveness
We first present the effectiveness of minimizing developer efforts.
Syntactic Evaluation.As shown in Figure 4, the vector similarities
for all 86 contracts are all above 0.995, demonstrating that 𝑃𝑠 are
highly similar to 𝑃𝑔 in terms of syntactic structures. The reason
for the similarity dips in IC, RRC and Mini-bench categories is
that some Termination related functions are incorrectly included
or removed. Fundamentally, this is caused by wrongly assigned
SmartIR terms during the slot filling phase. In § 4.3, we will provide
the detailed per-category F1 scores for SmartIR instantiation.
Semantic Evaluation. We perform function-level correctness
verification in semantic evaluation. A function in 𝑃𝑠 is incorrectly
synthesized if any of its statements is wrong or the entire function
is missing. Table 4 present the average percentage of semantically
correct functions for each contract category, as well as the average
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Table 3: Statistical information of the evaluation data set

Category CC EA IC PMA RRC SECPA TA Mini-bench Total
# of Legal Agreements 8 9 10 10 9 10 8 22 86

# of Sentences 65080 1702 32924 12749 3038 5427 4108 4879 129907

Table 4: The percentage of semantically-correct functions in the synthesized smart contracts

Category CC EA IC PMA RRC SECPA TA Mini-bench Average
Percentage 91.25% 91.57% 87.84% 88.00% 92.31% 95.79% 83.56% 88.16% 89.80%

Table 5: Comparison of 𝐹1 scores in SmartIR instantiation between iSyn and the other techniques

Category
Entity OnlineStateTransfer OfflineDelivery Termination

QA Rule iSyn QA Rule iSyn QA Rule iSyn QA Rule iSyn
CC 0.27 0.13 0.82 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
EA 0.49 0.51 0.81 0.22 0.61 0.88 1.00 1.00 1.00 0.50 1.00 1.00
IC 0.42 0.22 0.81 0.70 0.80 0.80 1.00 1.00 1.00 0.65 0.55 0.55

PMA 0.34 0.18 0.72 0.60 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00
RRC 0.37 0.31 0.68 0.33 0.76 0.83 0.67 1.00 1.00 0.55 0.73 0.72
SECPA 0.44 0.26 0.91 0.15 0.95 0.95 1.00 1.00 1.00 0.80 0.85 1.00
TA 0.21 0.14 0.63 0.63 0.63 0.63 1.00 1.00 1.00 0.63 0.93 0.94

Mini-bench 0.61 0.39 0.86 0.21 0.86 0.81 0.57 0.95 1.00 0.54 0.62 0.62
AVG 0.39 0.27 0.78 0.48 0.83 0.86 0.91 0.99 1.00 0.58 0.84 0.85
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Figure 4: Deckard characteristic vector cosine similarity be-
tween synthesized and ground truth smart contracts

percentage across all categories. Overall, iSyn achieves roughly 90%
accuracy. There are four categories with average correctness rates
lower than 90%. A closer inspection reveals that it is caused by the
relatively low accuracy for processing Entity , OnlineStateTransfer
or Termination intents during SmartIR instantiation. For instance,
TA has the lowest accuracy for both Entity and OnlineStateTrans-
fer in SmartIR instantiation. In § 4.3, we will give the detailed
per-category accuracies for each type of intents during SmartIR
instantiation. For semantically incorrect functions, we measure the
number of edits (as defined in GumTreeDiff [21]) required to correct
them. Then we count the total number of edits required for each
synthesized smart contract with incorrect functions, and report the
final results in Figure 5. Overall, the maximum number of edits to
correct a contract is seven. The three contract categories with the
highest edit counts are TA, IC and PMA, which is expected based
on their function correctness rates in Table 4.
Summary. These results demonstrate that 𝑃𝑠 are syntactically sim-
ilar to 𝑃𝑔 , and it requires only minor edits to make 𝑃𝑠 semantically
equivalent to 𝑃𝑔 .
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Figure 5: The number of edits required to semantically cor-
rect the synthesized smart contracts (if necessary)

Table 6: Top-𝑘 results for the QA model
Sender Receiver

Conf. Min. Avg. Conf. Min. Avg.
TOP-1 0.76 0.91 0.79 0.96
TOP-2 0.85 0.58 0.93 0.70
TOP-3 0.88 0.39 0.93 0.49
TOP-4 0.90 0.32 0.94 0.33
TOP-5 0.90 0.25 0.97 0.25

4.3 RQ2: SmartIR Correctness
To demonstrate the effectiveness of iSyn in SmartIR instantiation,
we compare iSyn with two alternatives: the semantic rule-based
technique [52, 56] (referred to as Rule) and the pre-trained RoBERTa
QAmodel (referred to asQA). Rule utilizes the same keyword based
method as iSyn to detect OnlineStateTransfer and OfflineDelivery
related sentences, and utilizes the NER technique to extract signed
entities, prices, and dates. QA uses the same set of questions as
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iSyn’s QA model to retrieve answers for all the SmartIR items. To
conduct fair comparison, both of QA and Rule also adopt the same
RoBERTa model for intent classification.

We manually inspect the legal agreements to obtain the expected
SmartIR items and compare themwith the generated SmartIR items.
We measure the true positives (𝑇𝑃 ) that describe the number of
as-expected SmartIR items, false positives (𝐹𝑃 ) that describe the
number of wrongly-generated SmartIR items, and false negatives
(𝐹𝑁 ) that describe that number of missed (expected) SmartIR items.
Based on these values, we compute the precision using 𝑇𝑃

𝑇𝑃+𝐹𝑃 , the
recall using 𝑇𝑃

𝑇𝑃+𝐹𝑁 , and the 𝐹1 score using 2 ∗ 𝑝𝑟𝑒𝑐∗𝑟𝑒𝑐
𝑝𝑟𝑒𝑐+𝑟𝑒𝑐 . Table 5

shows the 𝐹1 scores for the four types of intents. Clearly, iSyn
achieves the highest 𝐹1 score in all the categories, demonstrating
its superiority over Rule and QA. Especially for Entity sentences,
the 𝐹1 improvement of iSyn over QA and Rule are 100.00% and
181.48%, respectively. Due to space limit, we show examples of
extracted sentences in our project website [3].
Ambiguity in QA. Due to the ambiguity in defining entities using
natural language, iSyn also provides the top-𝑘 entities returned
by the QA model (i.e., RoBERTa). Table 6 shows statistical results
about extracted top-𝑘 entities for the OnlineStateTransfer sender
and the OnlineStateTransfer receiver of the legal agreements found
by the QA model. Column “Min. Avg.” shows the minimum average
probabilities computed by the QA model for the top-𝑘 entities.
Column “Conf.” shows the confidence scores of the top-𝑘 entities,
which is defined as: if these 𝑘 entities contain the entity defined in
ground truth, then the confidence is 1.0, otherwise the confidence
is 0.0. The results show that with the increases of 𝑘 , the confidence
score increases accordingly, and the minimum average probability
decreases. For OnlineStateTransfer sender and receiver, we notice
that the confidence is above 0.9, indicating that the top-𝑘 entities
identified by iSyn are very likely to be the correct entities defined
in the legal agreements.

4.4 RQ3: Intent Classification
To classify intent-related sentences from the legal agreements, we
can potentially use any state-of-the-art NLP models. To justify our
choice, we curate a benchmark dataset of 807 legal agreements
and manually add the intent label for over 30, 000 sentences in
these legal agreements. The labeling process was conducted by 5
computer science graduates reading legal contracts verbatim, aided
by 4 law school graduates. The whole process took us 3 months. We
then apply multiple state-of-the-art NLP models on this dataset and
compare their performances. To measure the effectiveness of intent
classification, we utilizes𝑀𝐶𝐶 (Matthews correlation efficient) [35].
𝑀𝐶𝐶 is 1.00 if all samples are classified correctly and −1.00 if no
samples are correctly classified. Random guess yields a zero𝑀𝐶𝐶 .

According to the model structure and different pre-trained setup
(e.g., number of layer, case sensitive or not, pre-trained data set), we
study 10 models: RoBERTa [41], BERT-1 (case insensitive), BERT-2
(case sensitive) [15], DistilBERT-1 (case insensitive) [57], DistialBERT-
2 (case sensitive), DistilBERT-3 (different pre-trained data), FlauBERT-
1 (small structure and case sensitive) [39], FlauBERT-2 (base struc-
ture and case sensitive), FlauBERT-3 (base structure and case insen-
sitive), and Xlnet [75]. All these models are publicly accessible in the
Github [20]. We use 80% of the sentences for fine tuning the models,
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Figure 6: The number of operation constraints used for gener-
ating ground truth validation cases and our validation cases

and 20% of the sentences for model evaluation. The comparison is
conducted using 5-fold validation. Table 8 shows the average𝑀𝐶𝐶

of each model. The𝑀𝐶𝐶 values of all models are above 0.849, and
RoBERTa achieves the best performance (𝑀𝐶𝐶 being 0.884). These
results demonstrate that the RoBERTa model fine-tuned with our
benchmark dataset is highly effective in classifying intent-related
sentences from the original legal agreements.

4.5 RQ4: Validation Case Quality
In iSyn, the validation cases are generated based on the correspond-
ing operation constraints extracted from the SmartIR instances.
Thus, to demonstrate the quality of the validation cases generated
by iSyn, for each legal agreement in the evaluation set, we directly
compare the operation constraints obtained from SmartIR with the
operation constraints manually constructed by the legal experts
based on careful examination of the legal agreements. As the set
of operation constraints used in both scenarios is consistent, it is
sufficient to directly compare the number of operation constraints.
We plot the results in Figure 6. We further compute the recall and
precision for each contract category, as shown in Table 7. Both
results demonstrate a high recall, i.e., the operation constraints ex-
tracted from SmartIR can cover nearly all the operation constraints
presented in the original legal agreements. Meanwhile, the overall
mean precision for all contracts is as high as 92.26%. The relatively
low precision in IC, Mini-bench and TA is caused by the deficiency
in processing OnlineStateTransfer and Termination intents during
SmartIR instantiation for these contracts, as we show in Table 5.

5 DISCUSSION
Threats to Validity. The main internal threat to the validity of
iSyn is the possible mistakes while constructing the ground truth
smart contracts. To mitigate this threat, we integrate the comments
from multiple legal experts when manually validating these ground
truth contracts. The major external threat to validity originates
from the scope of legal agreements that iSyn can process. To ad-
dress this concern, we refine our scope to focus on legal agreements
centering around financial transactions. This scope refinement is
supported by data: through a large scale empirical study (§ 2.2), we
find that over 80% of the legal agreements in top-10 most popular
categories on Law Insider [33] primarily focus on financial transac-
tions. Meanwhile, smart contracts and blockchains are commonly
cited as the key digital enablers for the next generation financial
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Table 7: Recall and Precision of the operation constraints used for generating validation cases

Category CC EA IC PMA RRC SECPA TA Mini-bench Average
Recall 100.00% 93.15% 100.00% 98.89% 98.61% 98.82% 100.00% 96.50% 98.06%

Precision 100.00% 100.00% 78.65% 100.00% 91.03% 96.55% 90.14% 87.90% 92.26%

Table 8: Comparing NLP models in classifying intents from
legal agreements

Model Case MCC AVG Deviation

RoBERTa insensitive 0.884 0.01
BERT-1 insensitive 0.879 0.01
BERT-2 sensitive 0.881 0.01

DistilBERT-1 insensitive 0.881 0.01
DistilBERT-2 sensitive 0.882 0.02
DistlBERT-3 insensitive 0.871 0.01
FlauBERT-1 sensitive 0.849 0.01
FlauBERT-2 sensitive 0.865 0.16
FlauBERT-3 insensitive 0.868 0.15

Xlnet sensitive 0.881 0.01

systems [16, 58, 71]. Thus, financial transaction based legal agree-
ments are reasonable starting points for iSyn. Further expanding
the scope of iSyn is part of our future work.
Template Mining & Sharing. To support diverse requirements
in legal agreements, iSyn will need to include more types of smart
contract templates. We outline two potential approaches. First, we
can mine the smart contracts related with the common behavior in
legal agreements, and cluster them accordingly. For each cluster, we
can infer a representative code sketch and use them as the basis to
build additional templates for the specific type of legal agreement.
Second, the users of iSyn could reward the template providers
to stimulate participation. With increasing template availability,
iSyn may further utilize the interactive learning framework [70] or
example-based synthesis [7] to generate more templates.
Supported Intent Types. Based on our empirical study, iSyn sup-
ports four types of intents for representing core operations and
conditions for financial legal agreements. To support other types
of legal agreements (e.g., voting and service agreements), we can
extend our intent model to include additional types to represent
their key logic. New intent classification and QA models should be
trained accordingly to recognize these new intent types.
Smart Contract Interoperability. A line of future work for iSyn
is representing the interoperability among multiple smart con-
tracts [42]. For example, the data and execution state of one le-
gal agreement may serve as the constraints and data input for an
amendment legal agreement. Currently, the users of iSyn can man-
ually establish this relationship on the synthesized smart contracts
by inserting cross-contract function calls.

6 RELATEDWORK
Specification-based ProgramSynthesis. Specification-based pro-
gram synthesis [29, 63] uses sketches that express the semantics de-
fined in target programs. Yet, the difficulty of writing complete speci-
fications hinders applications. Another category of program synthe-
sis techniques is driven either by demonstrations (PBD) [13, 37], i.e.,

a trace of the user-performed behavior, or input-output examples
(PBE) [27, 28, 40]. However, these program synthesis techniques es-
sentially perform exhaustive search, and therefore are only capable
of generating simple DSL targets such as datasheet scripts or tele-
phone scripts. Given the complex semantics of the legal agreements
and the dynamic statements of Turing-complete programming lan-
guages, these approaches cannot be directly applied.
NLP-Based Program Synthesis. Researchers propose the NLP-
Based Program Synthesis to avoid writing specifications [14, 30, 74].
However, the input of these existing works is much smaller than the
input of iSyn, which can include dozens of pages and thousands of
sentences. Another line of research focuses on translating natural
language texts to domain-specific programs [14, 30, 62, 63, 74].
These approaches mainly focus on synthesizing expressions with
a few parameters for a DSL and the inputs are often one or two
sentences. Thus, none of them have demonstrated the capability of
extracting the core transaction logic from thousands of sentences
and presenting the logic as a holistic software program with dozens
of functions and hundreds of lines of code.
NLP-based Legal Document Analysis.With the rapid growth of
NLP techniques, AI researchers together with legal experts have
carried out significant efforts in automatic legal document analy-
sis, roughly categorized as symbol-based methods [10, 47, 60] and
embedding-based methods [8, 12, 46]. These research works aim at
undertaking tedious legal jobs, such as retrieving and understand-
ing lengthy legal documents, thus reducing the heavy burden of
legal professionals and promoting the efficiency of legal institutions.
Though legal document analysis has been widely deployed in ar-
eas like judgment prediction [9, 48], similar case matching [64, 66]
and text summarization [53, 80], little has been done to enable the
extraction of smart contracts from legal agreements.

7 CONCLUSION
In this paper, we presented iSyn, the first semi-automated system
that synthesizes blockchain-executable smart contracts based on
legal financial agreements, with minimal human interventions. iSyn
is designed around a novel SmartIR design that bridges the gap
between financial agreements and smart contracts: (i) iSyn applies
a synergistic NLP pipeline to translate the transaction intents in
legal agreements into SmartIR instances defined in rigorous gram-
mar rules; (ii) iSyn applies a template-driven program synthesis
to output the smart contracts given these SmartIR instances. We
implemented a prototype of iSyn in roughly 6,000 lines of code and
perform extensive evaluations to demonstrate its effectiveness.
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