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ABSTRACT
Today’s enterprises are exposed to sophisticated attacks, such as
Advanced Persistent Threats (APT) attacks, which usually consist of
stealthy multiple steps. To counter these attacks, enterprises often
rely on causality analysis on the system activity data collected from
a ubiquitous system monitoring to discover the initial penetration
point, and from there identify previously unknown attack steps.
However, one major challenge for causality analysis is that the
ubiquitous system monitoring generates a colossal amount of data
and hosting such a huge amount of data is prohibitively expensive.
Thus, there is a strong demand for techniques that reduce the storage
of data for causality analysis and yet preserve the quality of the
causality analysis.

To address this problem, in this paper, we propose NodeMerge,
a template based data reduction system for online system event
storage. Specifically, our approach can directly work on the stream
of system dependency data and achieve data reduction on the read-
only file events based on their access patterns. It can either reduce
the storage cost or improve the performance of causality analysis
under the same budget. Only with a reasonable amount of resource
for online data reduction, it nearly completely preserves the accu-
racy for causality analysis. The reduced form of data can be used
directly with little overhead.

To evaluate our approach, we conducted a set of comprehensive
evaluations, which show that for different categories of workloads,
our system can reduce the storage capacity of raw system depen-
dency data by as high as 75.7 times, and the storage capacity of
the state-of-the-art approach by as high as 32.6 times. Furthermore,
the results also demonstrate that our approach keeps all the causal-
ity analysis information and has a reasonably small overhead in
memory and hard disk.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation;
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1 INTRODUCTION
Modern enterprises are facing the challenge of Advanced Persistent
Threat (APT) attacks. These sophisticated and specially designed
threats are conducted in multiple steps, and can remain undetected
for weeks, months and sometimes years, while stealthily and slowly
gathering critical information from victims [2, 10, 12, 42]. For in-
stance, the US retailer TARGET [42] leaked 400 million users’ credit
card information; one third of US citizens’ SSNs has been exposed
due to the Equifax data breach [12].

Unfortunately, it is extremely hard, if not impossible, to always
capture intrusions at their early stages because they may not release
signals that are strong enough to trigger alarms. Consequently, to be
able to diagnose and safely recover from attacks, once a suspicious
activity has been detected, causality analysis [3, 21, 23, 24, 30, 38]
is very much desired to discover its initial penetration points as
well as other attack footprints previously unknown.

To enable causality analysis in enterprises, it requires a com-
prehensive collection of operating system events from all corpo-
rate computer hosts. These events record the interactions between
OS-level resources, such as file read/write, process start/end and
network communication. Despite the effectiveness of causality anal-
ysis, such a ubiquitous data logging can generate a colossal amount
of records, which introduces significant pressure to storage sys-
tems. For instance, 70PB of data will be produced from a typical
commercial bank with 200,000 hosts every year [46]. Hosting this
enormous data may require millions of US dollars and can impose
a heavy burden on enterprise security budget [11].

In addition, when massive data have been accumulated, they
may cost excessive time to search for necessary events and thus to
reconstruct causalities. However, prior work [28] has shown that,
although causality analysis is conducted in a post-mortem manner,
it is in fact time critical. In order to quickly locate interesting causal
dependencies, it is thus preferable to store historical events in well-
indexed online databases than to save the data into backup storage
(e.g., tape drives) in a compressed format such as 7zip. To further
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Figure 1: Compare our approach NodeMerge to existing re-
duction techniques such as LogGC [25] and Xu’s work of
CPR/PCAR [46].

increase query speed, it is also possible to employ SSD instead
of HDD, since the superior random-access performance of SSD
can greatly facilitate index-based search during causality graph
construction. Nonetheless, the acceleration of causality analysis
comes at a price, as a SSD is 5 times as expensive as a HDD of
the same size [8] while a HDD is 4 times more costful than a tape
drive [1]. Hence, reducing data storage of OS events may potentially
lead to a more timely causality analysis because the same budget
can then be spent on a smaller volume of faster storage device.

As a result, data reduction is of crucial importance for both re-
ducing the cost and improving the speed of attack investigation.
This, however, is a challenging task for two major reasons. First,
an effective data reduction mechanism has to preserve the interde-
pendencies among OS events, so as to support causality analysis.
Hence, although simple, statistical summary of events can lead to
major data reduction, it does not serve our needs because it may
remove critical attack activities and thus break causalities. Second,
the volume of OS events must be reduced before they reach storage
systems. Otherwise, reducing data that has already been stored to
databases causes excessive extra I/O overhead. Consequently, a fast
online algorithm is highly desired to achieve our goal.

A few approaches have been proposed in this line of research in
the security community. LogGC [25] removes temporary files from
the collected data since these files have little impact on causality
analysis. Xu et al.’s work [46] merges repeated low-level events
between two OS objects, such as multiple read events between a
process and a file, in order to extract a high-level abstraction of
system activities. In contrast, our work, as shown in Figure 1, ex-
ploits a totally different data access pattern for data reduction, and
thus is complementary to the previous work. In fact, in our eval-
uation, we demonstrate that our approach can achieve additional
data reduction on top of Xu et al.’s technique.

Our data reduction is inspired by the key insight that frequent
invocation of programs can produce a huge volume of redundant

events because every process initialization performs constant and
intensive actions to load libraries, access read-only resources and
retrieve configurations. For instance, if a program has been exe-
cuted for 1,000 times while each time 100 files have been accessed
during initialization, eventually 1, 000 × 100 = 100, 000 events can
be easily accumulated for merely this individual program. To our
study, this execution pattern is fairly common in many different
workloads, particularly in the environments of data analytics, big-
data processing, and software development, testing and simulation.
We also have an anecdotal observation that those machines bearing
such workloads may create hundreds of times more events than
others.

From the perspective of causality analysis, these libraries, re-
sources and configuration files can be considered as a groupwithout
breaking original data dependencies. Based upon this observation,
we propose a novel online, template-based data reduction approach,
NodeMerge, that automatically learns the fixed sets of libraries
and read-only resources for running programs as templates, and
further uses these templates to compress system event data.

The key technical challenge of NodeMerge is how to discover
the templates effectively and efficiently with a constrained system
overhead. To address this challenge, we adopted and optimized
the FP-Growth algorithm [16], which can discover frequent item
patterns in system events. Our enhanced algorithm takes full ad-
vantage of the characteristics of system event data, so that it is
orders of magnitude faster and thus more efficient than the original
FP-Growth algorithm.

Our approach is designed as an online service that reads a stream
of system events from the ETW [32] and Linux Auditing [37], learns
the templates based on a subset of historic data, and reduces the
future data after the learned period. NodeMerge has many novel
and unique advantages. First, the data reduced by NodeMerge can
be directly used in causality analysis without a costly inference pro-
cess. Using the reduced data by NodeMerge introduces negligible
runtime overhead to causality analysis. Second, NodeMerge uses
constrained memory space to hold the intermediate data. Moreover,
NodeMerge introduces nearly zero information loss in causal-
ity analysis. It guarantees that the dependencies between system
events are preserved before they have been retired. Finally, being or-
thogonal to the existing data reduction approaches such as LogGC,
NodeMerge can be integrated with other approaches for further
data reduction.

To evaluate NodeMerge, we extensively evaluated 1.3 TB data
collected from a real-world corporate environment with 75 hosts
in an anonymous company, with multiple types of workloads. For
certain workloads, we can reduce the data by 75.7 times. Even when
the state-of-the-art data reduction approach [46] has already been
applied, our technique can still further improve the storage capacity
by 11 times on the host level and 32.6 times on the application
level. Such a high data reduction ratio may potentially help an
enterprise to save more than half amillion US dollars for storage
cost each year [36, 46]. To confirm NodeMerge’s capability of
keeping system dependency information, we performed causality
analysis on the event data before and after reduction. Our test
cases included five real-world attacks, five real-world applications,
and 11,587 randomly selected events. Encouragingly, NodeMerge
produced zero false positives in system dependency analyses. Lastly,
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we measured the computational cost of NodeMerge. Our approach
on average uses 1.3 GBmemory during the reduction for processing
1,337 GB data from 75 machines of 27 days. It took 60 minutes in
each training cycle to learn the templates. This result confirms that
NodeMerge could reduce the data with a reasonable amount of
cost. Overall, our evaluations confirm that NodeMerge is effective
and efficient in reducing the storage requirement of system event
data.

We summarize the contributions of this paper as follows:
• We propose a novel system, NodeMerge, to improve the
storage capability of security event storage systems by as
high as 75.7 times.

• NodeMerge contains a novel FP-Growth based algorithm,
which is substantially faster than the original FP-Growth
algorithm, to discover the file access patterns of processes.

• We theoretically prove that, compared to the original FP-
Growth algorithm, the loss of reduction capability of our
algorithm is bounded.

• We performed an extensive evaluation with real-world en-
terprise data.

2 BACKGROUND AND MOTIVATION
In this section, we briefly discuss the background of causality anal-
ysis and its related data, and our observation of template based data
compression that has inspired this work.

2.1 System Event Data and Causality Analysis
System event data record the causality relationships between sys-
tem objects. In this paper, we discuss three types of events: process
events, file events, and network events, as commonly used in secu-
rity analysis. Process events record the actions of processes, such as
a process start, fork, and stop. File events record how files are used,
such as a file read, write, open, close, delete, and rename. Network
events record the network related actions, such as a network open,
read, write, and close. All these three types of events also record the
source system object and the target system object of the event, the
time stamps, file permissions, and other necessary system informa-
tion for a dependency analysis. System event data can be collected
by the system monitoring frameworks, such as Event Tracing for
Windows (ETW) [32] and Linux Audit [37].

Causality analysis organizes system events as a dependency
graph. It allows security experts to discover causal relationships
between system events. By doing so, security experts may po-
tentially reconstruct the attack scenarios for Advanced Persistent
Threat (APT) attacks [15, 21]. The nodes of the dependency graph
are system objects and the edges are system events, such as a file
read and a process start. The directions of edges represent the direc-
tions of data flow or control flow between system objects. Figure 2
is an example of a dependency graph. This example illustrates how
a bash script starts a python script to write logs to the disk. In
Figure 2, the circles with solid boundaries are files and the ones
with dashed boundaries are processes.

In a practical system dependencymonitoring system, the amount
of system event data can be colossal. Based on our experience of the
system event data in an anonymous company, the volume of system
event data can be as high as 2GB per one day per host. A typical
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Figure 2: An example of dependency graph.

commercial bank can have more than 200,000 hosts [46], which
implies that such places may need about 140PB storage to host the
data for a year! This amount of data reflects the urgency of effective
data compression algorithms. However, since causality analysis is
frequently used by security experts, traditional data compression
techniques, such as 7-zip [35], is not an efficient solution. Using the
data compressed by techniques like 7-zip requires an explicit, non-
trivial decompression process. Whenever people need to use the
data, they need to decompress the data. It is unacceptable. Instead,
a decompression-free data reduction technique is required.

2.2 Template Based Data Reduction
By studying the system event data collected in an anonymous com-
pany, we observed a common behavior that processes often repeti-
tively access the same set of files when they start. This pattern is
not particular on our environment rather a program characteristic.
This is because when a process starts, it often needs to load several
libraries and resources for initialization. We have several observa-
tions on this behavior for data compression: (1) these libraries and
resources are the same across different process instances of the same
executable; (2) libraries and resources do not contain useful system
dependency information since they are read-only. Thus, the file
events that are associated with the accesses of these libraries and re-
sources can be merged into one special event without losing the ac-
curacy in system dependency analysis. For example, Figure 3 shows
a dependency graph of running a Perl script /home/admin/run.pl .
The circles with dashed lines represent the process. Before the
Perl interpreter reads the script, it will first load eight libraries,
such as /etc/ld .so.cache , /lib/x86_64−linux−дnu/libpthread .so.0,
/usr/lib/libperl .so.5.18 and so on. Loading these libraries is nec-
essary to execute any Perl scripts. Thus, for every Perl process,
we can observe that the same eight files are loaded. Furthermore,
these eight files are all read-only, which means that they are always
the sources of any paths in the system dependency graph. Hence,
in the dependency graph, these eight files can be merged as one
single node without losing the dependency information outside
these eight files.

Based on the observation above, our conclusion is that: repre-
senting a set of read-only files that always be accessed together in
the system event data as a single special file in a system dependency
graph does not change the result of causality analysis.
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Figure 3: Dependency graph of running a Perl script

Based on this conclusion, we propose a new approach of template
based data reduction. Specifically, for each executable, our method
first discovers a set of templates of read-only files that are always
accessed together. After that, it merges the read-only files in the
templates as one item without breaking the system dependencies.

In practice, it is very challenging to do the template based data
reduction due to following reasons. The first challenge comes from
the randomness of system behaviors. Although an executable will
access a fixed set of files when it starts, the order of these files
can be varied or may contain noises. For example, python accesses
/etc/ld .so.cache , /lib/x86_64 − linux − дnu/libpthread .so.0, and
/usr/lib/libperl .so.5.18 when it starts, the order of them are often
different in different instances. Furthermore, besides accessing the
three files, python may also access some random files in different
instances. Under such a noisy condition, it is challenging to discover
templates for data reduction.

The second challenge comes from the large volume of data. Stor-
ing all the system event data in the database and performing the
reduction offline require too much space overhead to host the inter-
mediate data. To minimize the space requirement for intermediate
data, we need an online compression approach that can directly
compress an incoming stream of system event data before storing
them in the database.

3 THREAT MODEL
We consider the same threat model as related works,e.g., [25, 45, 46]:
while the adversaries can compromise user-level programs, the sys-
tem audit data is still provided and protected by the kernel. We
assume that adversaries have full knowledge about the NodeMerge
reduction algorithm and can gain control of a certain portion of
hosts from the enterprise. Adversaries can runmalwares, plant back-
doors, or run other reconnaissance tools (e.g, nmap [29]). Events
generated by those programs are faithfully recorded and reported.
We also assume that the backend remained in the trusted domain
and cannot be compromised by an adversary. Although keeping the
integrity of event data during system auditing and safely storing
the data are important, those problems are outside the scope of this
work. We can employ existing techniques [17, 18, 20] to address
these problems.

4 DESIGN DECISIONS
In our approach, we made four major design decisions. First, we
choose to design NodeMerge as an online reduction system. An
offline system has less requirement on the reduction speed which
allows a more complex algorithm to achieve higher reduction ratio.
However, an offline system also needs to cache the original data,
which could be very large and expensive to store. In our design, we
choose to limit the storage cost to cache the original data. Thus, we
make our system an online system that directly reduces the data
from the stream.

Second, we choose to have a decompression-free data schema to
store the data. That is, there is not an explicit decompression process
when the NodeMerge data is used in causality analysis. Our data
can be decompressed on-the-fly without slowing down the causality
analysis. We make this choice because the system event data are
frequently accessed by causality analysis in the daily routine of
security experts in an enterprise. An expensive decompression may
significantly affect the speed of causality analysis. A decompression-
free schema can avoid such an impact.

Third, we choose to merge read-only files as our main reduction
method. We make this decision to keep the system dependencies
in the causality analysis. Read-only files are “dead ends” in causal-
ity analysis. Merging multiple read-only files does not change the
dependencies between other events. By having a novel read-only
file detection method, our system guarantees that the dependen-
cies between system events are maintained before they have been
retired.

Fourth, we deploy NodeMerge on a centralized server. In gen-
eral, there are two options for the deployment of our system: (1)
distributed deployment on each host in an enterprise; (2) deploy-
ment on a centralized server. A distributed deployment may have
less network cost but will also increase the workload of the hosts.
It may decrease the user experience of the hosts. Further, deploy-
ing NodeMerge on a centralized server may achieve more data
reduction by learning the data reduction templates with the global
information across the whole network. According to [46], collecting
the events of one host to the centralized server may cost 100Kbit/s
network bandwidth. Such a cost is trivial for the internal network of
an enterprise. Thus, in our design, we choose to keep the user expe-
rience of each host and achieve higher data reduction by spending
slightly more cost of the network.

Data
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Figure 4: The architecture of NodeMerge
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Process Name Files Ranked

P1 F1, F2, F3, F4, F5, F7 F2, F4, F7, F3, F5, F1
P2 F2, F4, F7 F2, F4, F7
P3 F6, F7 F7, F6
P4 F2, F3, F4 F2, F3, F4
P5 F2, F3, F4 F2, F3, F4

Table 1: Collected file access data for each process

5 ARCHITECTURE
Figure 4 presents the architecture of NodeMerge. In our design,
NodeMerge runs on the cloud in an enterprise. The input of Node-
Merge is the stream of system events gathered by ETW or Linux
Audit on each host. In the enterprise, each host reports its event
from ETW or Linux Audit to a centralized stream. NodeMerge
runs on a server which monitors the centralized stream, reduces
the data, and then store them in the database.

NodeMerge comprises three components collaboratively real-
izing the four design decisions. The first component is the Data
Collector, which organizes and caches the most recent streamed
data into a cache – File Access Pattern (FAP), on the local disk.
Such a cache design allows the online reduction method. The Data
Collector also checks the items in FAP and only keeps the read-only
files. The size of the FAP is configurable. The second component
is the Template Learner, which periodically checks the FAP and
generates the Compressible File Access Pattern (CFAP) for data
reduction. The third component is the Reducer, which uses the
CFAP to reduce the incoming streamed data. The generated data
is already in the decompression-free schema. It then stores the
decompression-free schema into the database.

Our design of NodeMerge has two advantages. First, its resource
usage is limited. The disk cost for hosting intermediate results is
the size of FAP, which only hosts a subset of the total data and has
a fixed size. The memory usage of NodeMerge is mainly for host-
ing CFAPs, which is also limited as we will show in our evaluation.
Second, NodeMerge is robust to bursts of system log data events.
In our design, the data cached in the FAP is only used for CFAP
learning. If there is a burst of system log data events that causes the
FAP to drop events, it will only lose a few CFAP instead of losing
the events in the database.

6 DATA COLLECTOR
Data Collector has two main functionalities. First, it caches and or-
ganizes the file access information as a FAP, which will be then used
to learn the file access templates in the online reduction method.
Second, it checks the items in the FAP to only retain the read-only
files. This allows the reduced data to keep the event dependencies
in the causality analysis.

6.1 Generating FAP
In our approach, a FAP is defined as follows:

• A FAP is a table on the local disk with two columns.
• The first column, Process ID, contains the IDs of processes
• The second column, Files, contains the lists of files that are
accessed by the process of the same row in the initial stage.
In our approach, we define the first k seconds after a process
starts as the initial stage of the process. We will show how
we choose the value of k in Section 9.

An example of FAP is shown in the columns of Process Name
and Files of Table 1. In this example, the Files in the row of P1
contains all the files that are accessed by P1 in its initial stage. Note
that in our example, we only show the file names in the FAP for
the conciseness of the illustration. However, in our design, other
attributes of the files, such as permissions and owners, are also
stored.

The process of building the FAP is as follows. The Data Collector
monitors the streamed data. If the Data Collector finds an event
that represents a process start, it creates a new row with the cor-
responding process ID and inserts it to the FAP. At the same time,
the Data Collector also records the start timestamp of the process.
If the FAP is full, the Data Collector will remove the previous rows
in the FAP with a First-In-First-Out (FIFO) scheme. When the Data
Collector finds a file event that is in the initial stage of a process,
the Data Collector obtains the corresponding row of the FAP and
inserts the file event to the Files column of the row.

6.2 Identifying Read-only Files
Data Collector needs to only keep the read-only files in the FAP
so that the reduction does not break the event dependencies in the
causality analysis. Thus, it is important for the Data Collector to
detect read-only files.

The Data Collector classifies a file as a read-only file if there
isn’t a file write event to the file since a predefined time point tд .
Any files that are older than tд is out of the concerns of the security
experts. To detect the read-only files, the Data Collector monitors
the file write events in the streamed data. For each file, the Data
Collector keeps its last write event time, which is the timestamp
of the Data Collector seeing the latest file write event to the file
on the stream, to a local database. When the Data Collector sees
a file write event, it will update the last write event time of the
corresponding file accordingly. While checking the items in the
FAP, the Data Collector compares the latest file write event time
of each item to the predefined timestamp tд . If the latest file write
event time is older than tд , the Data Collector classifies the file
as a read-only file. In our design, tд is the earliest time point that
the system log data is available or concerned. In practice, system
log data will be retired after a certain period of time, e.g. three
months. NodeMerge does not keep the dependencies in the retired
data since they will not be available anyway.

One challenge for our read-only file reduction method is the ini-
tialization of the local database. There are two types of initialization
that NodeMerge needs to handle. First, when NodeMerge is newly
installed, it needs to give each file an initial last file write event time.
However, NodeMerge does not know the actual last file write event
at the installation time since it hasn’t started monitoring the event
stream. To initialize the last file write event time for each file in the
enterprise environment, NodeMerge scans the file objects in the
enterprise environment and uses the last modification time in the
metadata of these files as their initial last file write event time. By
doing this, we assume that the system is not compromised before
the installation of NodeMerge. Second, when a trusted application
is newly installed, NodeMerge needs to initialize the last write
event time of the installed files. Otherwise, this application will
not be compressed since its last write event time is newer than tд .
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For this case, we allow the security manager of an enterprise to
manually set a bogus last write event time, which is older than tд ,
for a newly installed trusted application. By doing so, NodeMerge
will ignore the creation of the application and detect a file of the ap-
plication as read-only if there are not future modifications to it. For
applications installed by normal users, their last write event time
will be their creation time. The files of these applications will not
be considered as read-only files until the security manager updates
tд to a time that is newer than the last write event time of the files.

7 TEMPLATE LEARNER
In a high level, Template Learner detects the frequent patterns
about how files are accessed by different processes and summarizes
the frequently used file combinations as the templates. Specifically,
Template Learner periodically checks the FAP and generates the
templates for each application, which are stored as CFAPs.

A key challenge is that it needs to be efficient enough for an
online reduction system. To learn the templates efficiently, we pro-
pose an FP-Growth [16] based approach. It has three steps. First, the
Template Learner builds an FP-Tree, which is a more concise repre-
sentation of the FAP. Second, the Template Learner generates the
CFAPs for data reduction. After the Template Learner has learned
the CFAPs, it will also clean the current FAP and release the space.
Third, the Template Learner converts all the CFAPs as a Finite State
Automaton (FSA) so that the Reducer can use it efficiently during
data compression.

7.1 Building FP-Tree
As the first step of our approach, Template Learner takes the FAP
as an input and generates a FP-Tree. Before building a FP-Tree, the
Template Learner makes a ranking based on the usage frequency
of files for the FAP. The usage frequency of a file is defined as how
many times does the file appear in the FAP. The files in each row
of the FAP are ranked in a descending order based on their usage
frequency. For example, the Ranked column of Table 1 is the result
of the ranking. In Table 1, F2 is used four times (by P1, P2, P4, and
P5) while F1 is used only once (by P1). Thus, in the first row of
the Ranked column, F1 is ranked after F2. An FP-Tree is defined as
follows [16]:

• It has a root node.
• Each node except the root node represents an item in the
Files column of the FAP. A node contains three fields, the file
id, a counter, and a link to the node that has the same file id.

• For two nodesA → B, B is the child ofA if there exists a row
in the FAP that contains both A and B in the Files column,
andA is ranked exactly one position before B after the usage
frequency based ranking.

The algorithm of building FP-Tree is as following [16]. First, this
approach creates the root node of the FP-Tree. Then, it scans each
row of the FAP, which is already sorted, to build other nodes of the
FP-Tree. For each row, R, in the FAP, the Template Learner calls the
INSERT (R,Root) in Algorithm 1. The method INSERT accepts two
parameters, the first one, F , is the list of files in a row of the FAP.
The second parameter, N , is a node of the FP-Tree. The method of
INSERT recursively inserts files in F into the tree after the node,
N . It first checks if the first file of F has the same ID as the node N

Root

A

C

C

D

D

D

Depth = 4

N.counter (Utilization Ratio)

B

A

B

C
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2200687 (100%)
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Figure 5: An example of FP-Growth tree optimization. (a)
Original FP-Growth Tree. (b) The FP-Growth tree after in-
frequently accessed paths are removed. (c) The FP-Growth
tree after merging WDPs

(line 2). If so (line 3 and 4), INSERT increases the counter of N and
inserts the following files of F to the tree recursively. Otherwise
(line 6 and 7), it creates a new node of the FP-Tree for the first file of
F and appends it as a child of N . Then, INSERT recursively inserts
the other files of F after the new node.

Algorithm 1 FP-Tree Insertion
Input: F: a list of files, N: a node in the FP-Tree
1: procedure Insert(F , N )
2: if F [0]. f ile_id == N . f ile_id then
3: N .counter + +
4: INSERT (F [1:],N )

5: else
6: Add F [0] as a child of N
7: INSERT (F [1:], F [0])
8: end if
9: end procedure

7.2 Discovery of Compressible File Access
Pattern

In this step, the Template Learner analyzes the FP-Tree and gener-
ates the CFAPs, which will then be used to generate the templates
for reduction. In our approach, we define a CFAP as a set of files
that appears together more than k times in the FAP. For example,
in Table 1, if we set k as 2, {F2, F4, F7} and {F2, F3, F4} are two
distinct CFAPs.

TheCFAPs can be generated by applying the standard FP-Growth
algorithm [16] over the FP-Tree. However, this approach has two
limitations. Firstly, the standard approach usually generates an FP-
Growth tree with a depth larger than 100 levels. As the algorithm’s
complexity is exponential to the depth of the tree, such a deep tree
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would hinder the original FP-Growth algorithm from finishing in
a reasonable amount of time. Secondly, the standard approach is
deemed to generate conflicting CFAPs (whose intersection is not
empty) which would confuse Reducer. To address these two limita-
tions, we altered the standard FP-Growth algorithm by prioritizing
CFAPs selection and making optimizations to the FP-Tree.

7.2.1 Prioritized Compressible File Access Pattern Selection: The
purpose of prioritized CFAP selection is to address the conflicting
CFAP items. The main idea is when there are conflicting CFAPs
to choose the one with the largest data reduction capability. It
has two steps. First, our approach runs the standard FP-Growth
algorithm to discover all combinations of each path in the FP-Tree.
Finally, our approach selects the CFAP segment candidates that can
approximately maximize the data reduction ratio.

To do the prioritized CFAP selection, for each item in the CFAP
generated by the original FP-Growth algorithm, our approach gives
it a data reduction score, which is defined by Equation (1). On the
high level, Equation (1) measures the potential data reduction of
a CFAP segment candidate t . Before our reduction process, the
unmerged data that matches t takes t . f req ∗ t .size units of space.
After the reduction, it takes t .size units of space to save the template
and t . f req ∗ 1 = t . f req units of space to save the merged data.
Thus, the total benefit of our data reduction will be the same as
Equation (1).

score(t) = t . f req ∗ t .size − t .size − t . f req (1)
With the definition of the reduction scores, our approach uses

a greedy algorithm to choose the CFAP candidates. We choose
the greedy algorithm since it is computationally inexpensive and
can provide a good enough data reduction ratio in practice. Our
algorithm iterates over the CFAPs generated by the FG-Growth
algorithm and selects the one with the highest data reduction score
that does not have overlap with other selected candidates. This
process is repeated until no candidates can be selected.

7.2.2 FP-Tree Optimization. To address the first limitation of the
original FP-growth, which is not efficient enough, we propose two
FP-Tree optimization methods to accelerate the learning process.
First, our algorithm removes infrequently accessed paths. Second,
our approachmerges the single paths in the FP-Tree. Note that these
optimizations do affect the accuracy of the reduced data. They only
slightly lose certain reduction ratios. Figure 5 is a real study case
that explains how our optimizations work.

Removing Infrequently Accessed Paths: Templates learned
from infrequently accessed paths do not have much reduction ca-
pability. Thus removing them can speed up the process of template
discovery while maintaining the reduction rate.

To trim barely utilized paths in FP-Tree, our approach trims a
node and all its children from the FP-Tree if it has the utilization
ratio less than the threshold. The utilization ratio for a node N of
an FP-Tree is defined as:

N .counter

Root .counter
(2)

On the high level, for a node, N , in the FP-Tree, Equation (2)
checks the ratio of its counter to the total number of patterns in the
FP-Tree, which is the counter of Root . According to Algorithm 1, the
counter of N represents the frequency of N being access together

with its parent by the same process. If the utilization ratio of N
is low, it means that N is rarely accessed together with its parent.
Thus, the CFAP candidates that contain N and its parent will not
be very effective in data reduction.

Weakly Dominated Path Merging: Merging Weakly Domi-
nated Paths (WDPs) can reduce the length of the FP-Tree so that
it can accelerate the speed of FP-Growth. This complexity of FP-
Growth is exponential to the depth of the FG-Tree. Reducing the
depth of the FP-Tree can significantly speed up the algorithm.

On the high level, a WDP is a single path of the FP-Tree that
the counters of all the nodes on the path have roughly the same
values. To define WDPs, we first define the weakly domination
relationship. For following part of this section, we define s and e as
two nodes of an FP-Tree, FP . We also define P(s, e) as a path in FP
that starts with s and ends with e . We say s weakly dominates e in
FP if and only if P(s, e) is a single path and Equation (3) holds.

∀p1∀p2 ∈ P(s, e) → (1 − σ ) <
p1.counter
p2.counter < (1 + σ ) (3)

Where σ is a redefined error threshold.
With the definition of weakly domination, we define the WDPs.

We noteWDP(s, e) as the WDP that starts from s and ends at e .
ThenWDP(s, e) meets following two conditions: first, s weakly
dominates e; second, the path from s to e is the longest path that
holds the weakly domination relationship.

Our method of merging WDPs guarantees that the CFAPs se-
lected from the FP-Tree after WDP merging are close enough to the
CFAPs selected without WDP merging. Strictly speaking, assume P
is a WDP in the FP-Tree, Tpre is the set of CFAPs selected on P by
the CFAP choosing algorithm in Section 7.2.1 before merging the
WDP and Tpost is the set of templates selected on P after merging
the WDP, we have:

score(Tpost ) > (1 − σ − ε)score(Tpre ) (4)
where score(T ) =

∑
t ∈T

score(t), σ is as the same as in Equation (3),

and ε → 0 when the max value of frequency of the CFAPs is very
high. To prove Equation (4), we have following two lemmas:

Lemma 7.1. score(Tpost ) = score(tall ), where tall is the template
candidate that contains all the nodes in P .

Proof. Since all nodes in P are merged as one node, the selective
CFAP discovering has to select them all after WDP merging. □

Lemma 7.2. score(tall )
score(Tpre )

> 1 − σ − ε . When fmax → +∞, ε → 0,
where fmax is the largest frequency of all the CFAP candidates in
Tpre .

Proof. For score(Tpre ), since in Section 7.2.1, our algorithm
selects CFAP segment candidates that have no overlap on a single
path, we have∑

t ′∈Tpre

score(t ′) < fmaxTpre .size −Tpre .size − fmax .
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According to Equation (3), we have fmin
fmax

> 1 − σ , where fmin is
the minimum frequency of all CFAP candidates in Tpre . Then, we
have:

score(tmax )

score(Tpre )
>

fminTpre .size − fmin −Tpre .size

fmaxTpre .size − fmax −Tpre .size

>
(1 − σ )fmaxTpre .size − (1 − σ )fmax −Tpre .size

fmaxTpre .size − fmax −Tpre .size

= 1 − σ − σ
Tpre .size

fmaxTpre .size − fmax −Tpre .size

(5)

When fmax → +∞, σ Tpre .size
fmaxTpre .size−fmax−Tpre .size

→ 0 □

Based on Lemma 7.1 and Lemma 7.2, it is clear that Equation (4)
holds.

8 REDUCER
The function of the Reducer is to merge incoming file events based
on the CFAPs learned by the Template Learner. The CFAPs are
organized as an FSA. Then, the Reducer matches the file events in
the initial stage of a process to the FSA for data reduction.

To reduce the streamed data, the Reducer maintains a small FAP
in the memory as a buffer. While monitoring the streamed data,
the Reducer stores the processes and the files accessed by them in
the initial stage. At the same time, the Reducer monitors the age of
each process, which is the time elapsed since the start time of the
process. When the Reducer sees a process has an age older than a
threshold, it sorts the files accessed by the process in its initial stage
on the file IDs and matches the sorted file sequence to the FSA.
The threshold is a long enough time span that can cover the whole
events of a process in its initial stage. It should be longer than the
length of the defined initial stage since the events may have delays.
If the sequence is accepted by the FSA, it will be merged as one
reduced event.

8.1 Building Finite State Automaton
To build the FSA, the Reducer sorts the items in each CFAP on the
file ID of each item. Then, the Reducer treats all the sorted CFAPs
as strings of file IDs and merges them as an FSA. Finally, in the FSA,
when each state finds a mismatch in the incoming file, instead of
transiting to the failed state, it will stay in the current state. Thus,
the FSA won’t fail when there are a few noises in the stream.

The formal process of building the FSA is shown in Algorithm 2.
Before processing the CFAPs, Algorithm 2 builds an empty FSA,
F , and adds an initial state, Init , to it. At line 4, Algorithm 2 ranks
the files of each CFAP in a list r . At line 5 to line 9, Algorithm 2
iterates over the ranked list r and creates a state for each of the file
in r . For the file r [i], its associated state in F is Sr [i]. For each Sr [i],
it jumps to the state of the next file, Sr [i+1], if it sees the next file
in the ranked list r (Line 7). Otherwise, the FSA stays in current
state Sr [i] (Line 8). After the loop, Algorithm 2 add the transition
between the initial state and r [0]. Finally, the Algorithm 2 reduces F
to remove duplicated states in F . This could be done with a standard
process [33].

Algorithm 2 Building FSA
Require: A list of CFAP, List
Ensure: An FSA,F for data reduction
1: Build an empty FSA, F
2: Add an initial state,Init , for F
3: for all c f ap ∈ List do
4: Rank items in c f ap based on their file IDs in a list r
5: for all i ∈ [0, r .lenдth) do
6: create a state Sr [i] in F
7: Add transition (Sr [i], r [i]) → Sr [i+1] to F
8: Add transition (Sr [i], !r [i]) → Sr [i] to F
9: end for
10: Add transition (Init , r [0]) → Sr [1] to F
11: Reduce F
12: end for

8.2 Retiring Invalid CFAPs
Our read-only detectionmethodmay have the “out of date template”
problem. In ourmethod, it is possible that while parsing the FAP and
generating the CFAPs, a file is read-only. However, after a certain
period of time, the file is modified and not read-only any more. In
this case, the CFAPs that are related to the file are not valid after the
modification to the file. This problem does not affect the reduction
before the modification to the file. However, continuously using
these CFAPs may break dependencies of the modified file.

To address this problem, the Reducermaintains a key-value store
that maps the read-only files to their corresponding CFAPs. Once
the Reducer finds an write event to a read only file, it removes
the modified file from the key-value store and deletes all the CFAP
related to the file.

8.3 Decompression Free Data Schema
Our reduced data support fast on-the-fly decompression in the
causality analysis. The reduced data can be directly used in the
causality analysis without slowing down the analysis speed. To
do so, NodeMerge organizes the reduced data into two relational
databases. The first is the event database, which stores the un-
merged system events and the merged events for read-only files.
The unmerged events contains the source, the destination, and
other attributes. The special events have the same format as the
unmerged events. The only difference is that instead of representing
one system event, a special event represents a set of events that
have been merged by a CFAP. Each special event has a unique ID
for its used CFAP. The second database is the template database,
which contains all the CFAPs and their corresponding events to
read-only files. Each CFAP has a unique ID, which is used in the
special events in the event database.

The two databases are opaque to the causality analysis. Node-
Merge provides an API to hide the query details from causality
analyses. While using the reduced data, causality analysis can di-
rectly use the provided interface to query the events and their
dependencies. If the query is to a normal unmerged event, Node-
Merge directly returns it to the causality analysis. If the query is to
a special event, NodeMerge first retrieves the merged read-only file
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Event type Event count (proportion)
Process events 219, 425, 286 (5.26%)
File events 3, 760, 786, 832 (90.18%)
Network events 189, 649, 659 (4.55%)

Table 2: The distribution by system event types.

Hosts Raw Data Improve
Data Analytics Server 33.7X 11.2X

Big Data Processing Server 23.5X 9.0X
Simulation And Test Bed 17.5X 6.7X

Developer’s Host 1 15.1X 6.3X
Developer’s Host 2 11.6X 4.9X

Other Hosts 4.2X 2.3X
Table 3: Host level reduction.

events in the corresponding CFAP and returns them to the causality
analysis.

9 EVALUATION
In our evaluation, we focus on answering following research ques-
tions:

• RQ 1: How effective is our approach in data reduction?
• RQ 2: What is the impact of our approach on the accuracy
of system dependency analysis.

• RQ 3: What is the time and memory cost to learn the CFAPs?
• RQ 4: How fast is our approach compared to the the original
FP-Growth algorithm?

9.1 Experiment Protocol
We implemented the agents to collect system event data using the
Linux Audit framework [4] and report to the back-end database.
We implemented the Data Collector, the Template Learner, and the
Reducer using Python programming language. We implemented
the FAP with Postgres Database. The Template Learner updates the
CFAP every 24 hours. To experiment our data reduction approach,
we deployed NodeMerge on a server with 16 core (Intel Xeon CPU
E52640 v3@ 2.60GHz), 102.4 GBmemory.We also deployed our data
collection agents to 75 hosts from NEC Labs America at Princeton.
The deployment includes all hosts for the lab’s daily activities which
include R&D and administrative such as legal, accounting and so
forth. Collected events are stored in a Postgres database.

Our data-set is collected from 01/06/2016 to 02/02/2016. In total,
we have 4,169,861,777 events, and the size amounts to 1,337 GB.

9.2 Effectiveness in Data Reduction
To evaluate the effectiveness of our approach in data reduction, we
measure the improvement of storage capacity by using NodeMerge.
We define the improvement of storage capacity as Sizepre

Sizepost , where
Sizepre is the size of hard disk to hold the system event data before
applying NodeMerge and Sizepost is the size of hard disk after
usingNodeMerge.Wemeasured two distinct types of improvement
of storage capacity. First, we measured how much storage capacity
was improved over the raw system event data. Second, wemeasured
the improvement of storage capacity over the reduced data of the
baseline approach [46]. We also measured the improvement of

Raw Data Improve #File #Process
Big Data
Processing 21.5X 9.17X 155 853113

Data Analytics
Software 75.7X 32.6X 927 630347

System Monitor 2.6X 1.3X 9 168148
Develop 13.5X 6.8X 45 425519
File Sharing 5.2X 1.9X 20 79857
System Util 1.9X 1.3X 18 329372
System Daemon 2.5X 1.8X 9 2593742
Database 3.2X 1.7X 57 815357
Communication 1.8X 1.3X 14 315478
Other 1.5X 1.1X 11 16974

Table 4: Workload Based Reduction.

storage capacity on two different levels, one the host level and one
the application level.

The improvement of storage capacity of on the host level is
shown in Table 3, in which we summarize the improvement of stor-
age capacity over 75 hosts. In Table 3, we can see that NodeMerge
is particularly effective on the data analytics and data processing
hosts. On average, NodeMerge improves the storage capacity on
the raw data for 28.3 times and for 10.1 times on the data reduced
by the baseline method for these two hosts. We studied the reason
about this. We found that on these hosts, people tend to frequently
and repeatedly use a similar set of programs, such as python, bash,
perl, R, and matlab, to do machine learning and data processing
tasks. In each execution, these program will load a fixed set of li-
braries and configuration files. Thus, there are strong patterns for
NodeMerge to learn.

Similar behavior also exists in our test bed and some of the
developer’s desktops. In the test bed, experiments are constantly
conducted. In the developer’s desktops, developers constantly start
the development tools, email clients, and git during their devel-
opment. For the these hosts, NodeMerge can also substantially
improve the storage capacity by 4.9 to 6.7 times over the data from
the baseline method. For other hosts, the average improvement is
4.2 times on the raw data and 2.3 time on the data reduced by the
baseline method. This means our approach can further save 56%
of the price of hosting system event data even after the data has
already been reduced by Xu et al.’s approach [46]. For a typical
enterprise with 200,000 nodes, this could mean a saving of more
than half a million US dollars per each year [36, 46].

On the application level, we categorized the all applications
in the 75 hosts into 10 categories based on their workload. The
result is in Table 4. Our categorization methodology is based on
the approach in [46]. Specifically, “Big Data Processing” represents
the tools to process data, such as bash and perl. “Data Analytics
Software” contains the machine learning tools, such as python, R,
andMatlab. “SystemMonitor” includes the auditing and monitoring
tools. “Develop” includes the development tools such as Eclipse,
Visual Studio, and compilers like GCC. “File Sharing” contains the
applications used to share files such as SVN, CVS, and DropBox.
“System Util” has the common utilities tools in Windows, like Disk
Utilities. “System Daemon” represents daemon processes running
in the background. “Database” includes these processes running as
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database services like MySQL, MangoDB, etc. “Other” includes all
other types of applications.

As reported in Table 4, NodeMerge performs best on the ma-
chine learning, data processing, and development tools. Especially
for the machine learning software, NodeMerge can improve the
storage capacity for 75.5 times on the raw data and 32.6 times of the
data reduced by the baseline method. To further explain the reason
of reduction, we also report the average number of accessed files
in the initial stage (#File) and the average numbers of instances
(#Process) of each application in Table 4. In our experiment, two
factors determine the reduction rate of NodeMerge: how many
files are accessed in the initial stage and how many times do appli-
cations repeat. For the applications that access a lot of files in their
initial stage and are repeated frequently, NodeMerge has a higher
reduction rate.

This explains why it achieves the best result on our machine
learning servers and some of the developers’ host. The similarity
between these applications is that they are frequently started and
closed. Once people open an application for multiple times, Node-
Merge can capture the initial stage of each execution and learn a
pattern to merge them. The more initial stages, the more reduction.

In conclusion, NodeMerge is effective in reducing data, partic-
ularly for machine learning and development hosts. These hosts
could be important parts of modern enterprises. By reducing data,
an enterprise can potentially save a substantial amount of operation
cost.

9.2.1 Impact of the Length of Initial Stage. To have a complete
evaluation, we also tested the effectiveness of our approach under
different configurations of the length of the initial stage. Remember
that the initial stage is defined as the first k seconds of a process.
Having a longer time of initial stage means increasing the length
of CFAPs and thus can achieve more data reduction. On the other
hand, a longer time of the initial stage also means that the Tem-
plate Learner needs to process more data and thus can increase the
overhead for data reduction.

In our experiment, we measured the improvement of storage ca-
pability of the raw data for NodeMerge with the initial stage as one
to five seconds respectively. The average host level improvement
of storage capacity for one, two, three, four, and five seconds were
3.8, 4.7, 4.74, 4,81, 4.88 respectively. The data reduction improved
most significantly by extending the initial stage from one second to
two seconds. Further extending the length did not improve the data
reduction much. This result indicates that having a two-seconds
long initial stage can already achieve near optimal data reduction
ratio. Having longer initial stage will not improve the effectiveness
of data reduction but increase the overhead.

9.3 Support of Causality Analysis
To evaluate how well can our approach keep the information in
system dependency analysis, we simulated ten realistic attack cases
during our experiment and performed the system dependency anal-
ysis both for the raw data and the reduced data. The attack data
is contained in our data used in Section 9.2. Then, we compared
the precision of the results of system dependency analysis on both
data set. Since our data reduction was designed to support security
causality analysis, we evaluated the precision of causality tracking

results on reduced data. Without loss of generality, we focused on
backtracking [21] for this experiment, as forward-tracking is the
opposite of backtracking.

We conducted two experiments. In the first experiment, we tested
our approach on real world cases. The first five cases were real-
world attacks. The Email Phishing attack delivers the Excel attach-
ment that drops and execute Trojan malware to a victim machine,
and triggered Excel to launch the malware instance, which in turn
created a backdoor to download othermalware payloads. In the Info-
Stealing incident, an attacker dumped databases from SqlServer
and leaked the stolen data to a remote cite. The Shellshock case
exploited the notorious Bash vulnerability and tricked an Apache
server to fork a Bash terminal. To enable an attack based upon
Netcat, an adversarial downloaded a Netcat utility, used it to open
a backdoor, and further downloaded malware through this stealthy
channel. Our Ransomware attack spawned multiple processes to
simultaneously encrypt specific targeted files on the system. The
other five test cases were collected from Xu et al’s test suite [46].
These were normal system operations including file reduction using
Gzip and Pbzip, account management using Useradd and Passwd,
and downloading and compilation of source code via Wget and Gcc.

With the ten test cases, we collected both of the raw system
events and corresponding reduced data and then ran backtracking
on both data to produce causal graphs and compare their results.
Due to the control over the test environment, we had full knowledge
of the ground truth for these cases.

In this experiment, we compared the connectivity (i.e., edge)
change of backtracking graphs before and after data reduction. The
backtracking results show that, for all test cases, our data reduction
can preserve original entities and connectivity and therefore does
not affect the quality of tracking results.

In the second experiment, we randomly select 11,587 Point of
Interest (POI) events from the data and apply backtracking to fur-
ther investigate the impact of data reduction upon attack forensics.
Our result demonstrates that backtracking results generated on
reduced data were completely unaffected compared to those pro-
duced from raw data. This was fundamentally due to the fact that
our templates captured and reduced the read-only files that were
intensively loaded at program initialization but have little backward
dependencies in recent past.

In all of our experiments, we also compared the execution time
of the causality analyses on the reduced data. We found that there
was no statistical significant difference between the execution
time on the reduced data and on the raw data.

9.4 Learning Cost
We measured the time and memory cost spent by the Template
Learner to learn the CFAPs under different lengths of the initial
stage. The length of the initial stage varied from one to five seconds.
In our experiment, the learning time for one to five seconds were
45, 60, 72, 77, and 80 minutes respectively. The memory cost for
one to five seconds were 0.5, 1.3, 3, 5.5, and 14.5 GB.

As shown in our experiment, our approach took less than an
hour to update the CFAPs. Since our approach updates the CFAP
every 24 hours, this length of learning time could not cause any
problems. The memory cost of our approach increases significantly
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when the length of initial stage increases. Increasing one second of
initial stage often means about 2-3 times of increment of memory
cost. Based on the result in Section 9.2.1, it indicates that prolonging
the length of initial stage beyond two seconds is not efficient.

Note that the NodeMerge runs on a centralized server. The
learning cost is spent only on the server instead of each host. Thus,
we believe the computational cost of our system is acceptable.

9.5 Acceleration of FP-Growth
In this section, we evaluated howmuch learning time could be saved
by our selective CFAP and FP-Tree pruning algorithms. To do this,
we altered the Template Learner in our approach. In this experiment,
the Template Learner used the original FP-Growth algorithm to
find CFAP candidates. To avoid confusion in the Reducer, we also
applied the CFAP selection algorithm in Section 7.2.1 to remove
CFAP candidates that contained others or were contained by others.
Then we followed the same protocol in Section 9.4 to measure the
learning time of the original FP-Growth algorithm.

In our experiment, we found that the original FP-Growth could
not finish learning in 24 hours under all different configurations.
We then terminated our experiment since it is too costly to keep
running the original FP-Growth algorithm. It was clear that the orig-
inal FP-Growth algorithm was not capable of learning CFAPs in a
reasonable amount of time. This result proves that our modification
to the FP-Growth algorithm is necessary.

10 DISCUSSION
In this section, we discuss two aspects of our approach regarding
preserving attack information after reduction and generality of this
approach.

10.1 Preservation of System Dependency
Information

Our approach is designed to keep the information after reduction in
causality analysis. We achieve this goal by only merging the read-
only files. The reduction in our method does not keep the temporal
orders of the read only files. However, these orders do not affect
the causality analyses because the read only files are always the
source of paths in a causality graph, merging them together does
not introduce any confusion in causality analysis. The capability of
our approach to keep system dependency information is evaluated
in details in Section 9.3.

10.2 Generality
Our approach is designed to be general for all types of data for
causality analysis, or system event data [15, 21, 32, 37]. We make
little assumption about the format of data, the types of hosts, the
types of applications, or the infrastructure of enterprise systems.
Hence, our approach can be applied to various kinds of systems
and data.

We also show that our system can achieve significant storage
capacity improvement with 1.3 GB memory. This configuration is
modest in enterprise level servers. Thus, we believe our system can
be widely applied to various enterprise environments.

10.3 Properties of the Algorithm
Our problem can be reduced to frequent itemset mining problems;
thus, our problem is NP-Hard, and achieving optimal reduction is
difficult. FP-Growth is one of the state-of-the-art algorithms for fre-
quent itemset mining. As we proved in Section 7.2.2 the difference in
pattern selection between our approach and FP-Growth is bounded
by σ . In Section 9 we show that our approach is substantially faster
than FP-growth.

Since our approach is based on the patterns of frequent itemset
mining, the capability of reduction relies on the workload of hosts.
We evaluated the quantified differences between the reduction rate
on different types of hosts in Section 9.2.

10.4 Possible Attacks
NodeMerge is generally robust to attacks. When the attacker in-
stalls malware in a host of an enterprise, the malware will be con-
sidered as a non-read-only file. Thus, NodeMerge will not merge
the events of the malware and it will not break the dependencies of
the malware. Although the attacker can inject malicious code to an
existing read only file, such an injection can cause a file write event
to the read-only file and nullify the read-only property of the file.
For any future events of the nullified read-only file, NodeMerge di-
rectly records the original events to keep the dependencies without
any reduction.

There is one corner case for attackers to compromise Node-
Merge. The attacker first uploads a malware to a host of an enter-
prise. Then the attacker waits for a long time without any malicious
behaviors until the security manager of the enterprise decide to
update the threshold of read only file detection, tд , to a time that
is newer than the creation time of the malware. After that, the
attacker starts attacks through the installed malware. In this case,
NodeMerge may potentially take the malware as a read only file
and potentially break the dependencies of the malware.

The root cause of this threat is not NodeMerge but the fact that
the security manager of an enterprise may want to retire the very
old system events. In practice, it is not possible for an enterprise
to store and maintain the system events for the whole enterprise
forever due to the cost of storage and the high volume of daily
generated system events. Very old system events that are not con-
cerned by the security team should be retired for new data. Thus,
even without NodeMerge, the attacker can always upload the mal-
ware, wait for a long enough time until the system events of the
malware are retired, and then start the actual attack to bypass the
possible security detection techniques in the target enterprise. To
address this problem, the enterprise only need to keep the events
for a longer and set tд as a very old timestamp that can guarantee
the integrity of the events before tд .

10.5 Limitations
NodeMerge only compresses read-only files, and we chose to omit
the write operations in our system. Such a design choice may re-
duce the capability of data reduction, e.g. NodeMerge may not be
effective for hosts that contain a lot of write operations. In this case,
a finer-grained storage reduction algorithm is needed, which may
substantially increase the computational cost of reduction. Achiev-
ing the balance between the computational cost and the reduction
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capability is challenging and beyond the scope of this paper. We
leave the techniques to compress write operations to future work.

NodeMerge is more effective on specific hosts than others using
different sets of applications in different ways. As discussed in Sec-
tion 9.2, NodeMerge shows higher reduction rate on the hosts for
data analysis or big data processing tasks, where they frequently
repeat the execution of the same applications. NodeMerge is not
effective on applications that do not load many files or have file
access patterns in their initial stages. By the enlarging of the anal-
ysis scope from processes’ initial stage to the whole life-cycle of
processes, our approach can achieve more reduction with higher
computational cost. We leave this to our future work.

11 RELATEDWORK
Only a few previous approaches focus on reducing the size of sys-
tem event data for system dependency analysis. Xu et al. proposed
an approach [46] to reduce system event data. The basic idea is to
aggregate the time windows of events related to the same system
objects (i.e., edges with the same source node and the same target
node in the dependency graph), since these edges carry the same
information about system activities except different time windows.
Despite the effectiveness, this approach misses a lot of opportuni-
ties for data reduction. The time window aggregation based data
reduction technique only handles the events with the same source
and destination. It does not merge the events that are different in
source or destination but have correlations. Similar to this approach,
our approach can preserve the information in system dependency
analysis. However, our approach can merge the file events that can-
not be handled by Xu’s approach. In our evaluation, our approach
can improve the storage capacity of his approach for nearly two
times.

Another closely related work is LogGC [25]. The idea of this
work is to remove the logs for system objects that have little impact
on system dependency analysis. The difference between our work
and LogGC is that LogGC focuses on the lifespan of files while our
work focuses on the correlation relationship between files. These
two pieces of work focused on two different directions of system
event reduction and can be coupled together to achieve further data
reduction.

Prior efforts have also been made to prune out system events that
are labeled either by operating systems (i.e., CABdedupe [41]) or
user-specified rules [6]. In contrast, our approach is fundamentally
different because we aim to automatically discover repeated tem-
plates in order to compress redundant data. ProTracer [31] reduced
the size of logs by switching between tainting and logging. Bates
et al. [5] extended the audit log framework to extract finer-grained
information and thus to achieve more precise causality tracking.
Unlike these approaches, which rely on additional kernel instru-
mentation, our approach works directly with kernel audit logs and
thus is easy to deploy.

Causality analysis is an important technique in security. King
et al. proposed an approach to backtrack system events [21] . Goel
et al. also proposed a similar backtracking system for system re-
covery [15]. Sitaraman et al. improved the backtracking technique
with more detailed system information logs [40]. Many other tech-
niques were also proposed to apply the backtracking technique in

different security related tasks, such as break-in detection, recov-
ery, and risk analysis [3, 13–15, 19, 21, 23, 24, 30, 38]. Other ap-
proaches also use system dependency analysis to generate code [3],
detect failures [7, 51, 52], identify user input [27], and classify mal-
ware [50]. Other techniques also rely on causality analysis to detect
malware [48, 49]. However, none of these techniques focuses on
reducing the data for system dependency analysis.

Han et al. first proposed the FP-Growth algorithm in the data
mining community to mine frequent patterns [16]. Li et al. proposed
a method to parallelize the FP-Growth algorithm [26]. Wang et al.
proposed the top-down FP-Growth algorithm to optimize the speed
of the original FP-Growth method [43]. Although these methods
are effective in a general purpose of mining frequent patterns, they
cannot be directly used for the big system log data as discussed in
Section 9.5. Unlike these approaches, our work focuses on finding
CFAPs from the system log data. Our approach made novel opti-
mizations to ensure the performance of CFAPs learning by taking
advantages of the features of CFAPs. We are not aware of other
existing machine learning techniques that can do similar work,
which is improving the storage capability of security event stor-
age systems while maintaining the dependencies between system
events.

There are several well known data compression algorithms, such
as gzip [34], bzip2 [39], and other techniques [22, 47]. There are
also other approaches to compress similar parts in graphs to save
storage [9, 44]. The main problem for these techniques is that they
require an explicit, non-trivial decompression process. However, if
people need to frequently use the compressed data in the causality
analysis, it is not realistic to decompress the data every time. On
the contrary, the data compressed by our approach can be decom-
pressed on the fly with a negligible runtime overhead.

12 CONCLUSION
In this paper, we propose a novel online template based approach
to reduce system event data. Our approach learns fixed patterns of
read-only file accesses and merges them into one special item in
the reduced data. By doing so, our approach effectively reduces the
volume of system event data while keeping the system dependency
information in system event data. We conducted a thorough eval-
uation of our approach which improves the storage capacity for
at most 11.2 times over the data reduced by the baseline approach.
During the reduction, our approach on average took 1.3 GB mem-
ory. This overhead was reasonable for most modern enterprise level
servers. The reduced data also preserved the accuracy of causality
analysis in realistic attack cases.
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