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ABSTRACT
Provenance-Based Endpoint Detection and Response (P-EDR) sys-
tems are deemed crucial for future Advanced Persistent Threats
(APT) defenses. Despite the fact that numerous new techniques to
improve P-EDR systems have been proposed in academia, it is still
unclear whether the industry will adopt P-EDR systems and what
improvements the industry desires for P-EDR systems. To this end,
we conduct the first set of systematic studies on the effectiveness
and the limitations of P-EDR systems. Our study consists of four
components: a one-to-one interview, an online questionnaire study,
a survey of the relevant literature, and a systematic measurement
study. Our research indicates that all industry experts consider
P-EDR systems to be more effective than conventional Endpoint
Detection and Response (EDR) systems. However, industry experts
are concerned about the operating cost of P-EDR systems. In addi-
tion, our research reveals three significant gaps between academia
and industry: (1) overlooking client-side overhead; (2) imbalanced
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alarm triage cost and interpretation cost; and (3) excessive server-
side memory consumption. This paper’s findings provide objective
data on the effectiveness of P-EDR systems and howmuch improve-
ments are needed to adopt P-EDR systems in industry.
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1 INTRODUCTION
P-EDR is a rising next-generation system for APT attack defend-
ing [19, 27, 32, 33, 51, 54, 70]. Compared with conventional EDR sys-
tems, P-EDR systems introduce provenance graph, a data structure
that models dependencies between system activities, so that they
can correlate multiple alarms, leading to higher detection accuracy
and better interpretability [30]. As such, we have witnessed a rapid
growth of P-EDR research recently from security/system top con-
ferences and industry adoption of P-EDR in commercial products.
According to a recent study [35], there are over 50 P-EDR related
papers published in the most prestigious security and systems con-
ferences in recent five years. Substantial research efforts have been
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Figure 1: The overview of workflow of our study.

put forth to improve P-EDR systems in terms of system optimiza-
tions [32, 57, 67, 76], detection algorithms [27, 30, 53, 54, 70, 78],
and broader security applications [69].

While these works have shown promising early results based
on evaluations in the academic setting, it is however still unclear
whether the industry values the potential of P-EDR systems and
would like to adopt some of these works [35]. Moreover, if the indus-
try has not adopted P-EDR systems yet due to various limitations,
how these systems can be improved remains unknown. Knowing
the answers to these questions is particularly important, as it can
guide future research efforts to focus on the most critical directions
based on the industry feedback. Specifically, there are three key
research questions that need to be addressed:
• RQ1: How does the industry compare the effectiveness of P-EDR
and EDR? This RQ can help us understand whether the research
values of P-EDR systems have been recognized by the industry.

• RQ2: What are the bottlenecks for the industry to adopt EDR
systems? It is natural that fundamental research takes years
before it can be deployed for practical use. This RQ can help us
focus the efforts in addressing the major bottlenecks and reduce
the turnaround time for P-EDR systems to be put into practice.

• RQ3: Howwell can existing P-EDR systems proposed in academia
meet the expectations of the industry? This RQ can help us un-
derstand the gaps between the techniques developed in academia
and the expectations of the industry.
To this end, we conduct the first set of systematic studies to

understand what are the industry’s expectations about P-EDR sys-
tems and how to close the gaps in adopting P-EDR systems. More
specifically, as shown in Figure 1, our study consists of four parts:
• Interviews: we first conducted one-to-one interviews to seek feed-
back on the effectiveness of P-EDR systems and identify their key
decision factors in adopting P-EDR. We successfully recruited
ten experienced technical managers of security teams from top
IT companies to join our interviews (Section 3). These companies
include both vendors and consumers of EDR/P-EDR products.

• Online Questionnaire: based on the key decision factors found in
the interviews, we further designed a structured online question-
naire to get feedback from a broader scope of security engineers
for refining the reference values of the key decision factors. Our
questionnaire received responses from 48 security engineers in a
variety of companies (Section 4).

• Literature Survey: based on the identified key decision factors,
we surveyed the P-EDR systems described in recent publications
and evaluated whether they can satisfy these decision factors
(Section 5). Our study revealed that none of the existing systems
provide evaluation results for all the key decision factors.

• Measurement Study: as many existing systems lack evaluation
results for the key decision factors, we further conducted a mea-
surement study on representative P-EDR systems using real in-
dustry datasets to measure whether these systems can satisfy
these factors and identify the gap (Section 6).
We perform an in-depth analysis of the study results and sum-

marize the findings to answer the three research questions:
• RQ1: All the interviewed managers acknowledged that P-EDR
systems are superior than conventional EDR systems due to
better interpretability. Experienced security analysts can easily
understand the provenance data even if it contains only low-
level system audit events. Surprisingly, while it is natural that
fundamental research takes years for it to be deployed in practice,
there are already some security teams (2 out of the 10 interviewed
teams) that have adopted P-EDR systems. Furthermore, they
have even started to provide training sessions for P-EDR systems.
These results show that EDR systems have the potential to replace
the EDR systems and become the dominating security defense
systems for advanced cyber attacks.

• RQ2: Most managers considered the operating cost of P-EDR
systems, including the computing cost on both the client-side and
server-side and the labor cost on alarm triage and attack inves-
tigation, as the primary bottleneck in adopting P-EDR systems,
even though intuitively we may generally consider detection ac-
curacy as the most important factor. In fact, most security teams
have experiences working with EDR systems that produce a high
number of false positives, and P-EDR systems generally have
higher detection accuracy, and thus they found no problems in
using P-EDR. However, most security teams cannot afford the
operating cost of existing P-EDR. For example, provenance data
collectors such as Auditd [62] can add at most 821%more runtime
overhead to applications running on the client side, and some
P-EDR systems require more than 200MB memory to process
the data for a protected host, which is 10 times more than the
industry expectation (20MB/host). These results show that future
research efforts should focus on optimizing the operating cost of
P-EDR systems on both the client-side and the server-side.

• RQ3: By performing a deeper analysis of our study results, we
identify three important gaps between the P-EDR techniques
proposed by the academia and the expectations of the industry:
(1) Overlooking Client-Side Overhead: 19 of the 20 surveyed

P-EDR systems rely on third-party provenance data collectors
such as Sysdig [16] and neglect the client-side overhead.

(2) Imbalance between Alarm Triage Cost and Interpreta-
tion Cost: some research focuses on optimizing the precision
in reducing alarm triage cost, but it introduces significant
interpretation cost by producing a large amount of prove-
nance data to inspect. Similarly, some research focuses on
optimizing the interpretation cost but overlooking the pre-
cision, producing lots of false positives. Few research has
considered both of these factors together, which makes most
P-EDR systems impractical in industry settings.

(3) Excessive Server-SideMemoryConsumption: most P-EDR
systems cache system auditing events in the memory, result-
ing in very high memory consumption. More research efforts
are in dire need to optimize memory consumption.
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These identified gaps shed light on what important factors are
neglected by the academia and howmuch improvement of P-EDR
systems is needed to meet the industry expectations.
In summary, the contributions of this paper are as follows:

• We are the first to investigate the industry’s expectations about
P-EDR systems and provide guidelines on how to close the gaps in
adopting P-EDR systems.

• We conduct a one-to-one interviewwith technical managers from
top IT companies and follow up with an online questionnaire to
obtain industry expectations on P-EDR systems.

• We conduct a measurement study on three representatives P-EDR
systems to measure whether existing P-EDR systems meet the
industry expectations and how much improvement is needed.
We make the dataset and the systems publicly available [3] to
enable the reproducible study and facilitate further research on
APT detection and investigation.

• We perform in-depth data analysis of the study results to identify
the gaps between academic techniques for P-EDR systems and the
industry expectations and provide guidelines for future research.

2 BACKGROUND
In recent years, research on provenance analysis is emerging in
academia, and it has gradually become an effective tool for APT
detection. Muhammad [35] describes provenance analysis as the
totality of system execution and facilitates causal analysis of system
activities by reconstructing the chain of events that lead to an attack
as well as the ramifications of the attack. BackTracker [40] identifies
files and processes that may affect the detection point and displays
the chain of events in a provenance graph, which is the first at-
tempt on provenance-based intrusion detection. Due to provenance
auditing can record system activities in detail and is hard to evade,
provenance-based APT detection models [27, 29, 32, 33, 51, 54, 70]
have emerged in the past few years. However, according to our
survey, provenance-based techniques have not been widely used
in industrial commercial EDR. There are still unacceptable gaps
between academic research and industrial deployment.

2.1 Overview of the P-EDR System
The overall process of a P-EDR system is shown in Figure 3. In
general, a P-EDR system is the core part of a commercial Security
Operation Center (SOC) that monitors the endpoint hosts (e.g.,
servers, desktops, laptops, e.t.c.) and detects attacks on the hosts. A
typical P-EDR system consists of two key components: the client-
side component and the server-side component. The client-side
component is an agent installed on the monitored hosts that collects
provenance data from the hosts. The server-side component is
a dedicated server that processes the collected provenance data
and detects APT attacks. A typical P-EDR system [27, 29, 30, 54]
contains four key steps.

The first step is data collection, which runs on the monitored
hosts to collect provenance data and do some preliminary refine-
ment and cleaning. Normally, the collected provenance data con-
tains process, file, register, and network operation logs. Then, the
P-EDR system sends the collected data to the server. In commercial
systems, the agent may also compress the provenance data before
sending it to the server.

Table 1: System events of the provenance analysis

Entity↔Entity Operation Types
Process→File read, write, create, chmod, rename

Process↔Process fork, clone, execve, pipe
Process→IP sendto, recvfrom, recvmsg, sendmsg

The next three steps are on the server side. The second step is
detection, in which the P-EDR system detects APT attacks from
the collected provenance data, using manually crafted rules [29,
54] or machine learning algorithms [27, 70]. The third step is the
investigation, in which the P-EDR automatically helps security
admins correlate related alarms and investigate the root causes
of alarms. In the last step, security experts validate the generated
alarms and respond to possible attacks.

2.2 Provenance Analysis and Provenance Graph
Compared with conventional EDR systems, the unique advantage
of a P-EDR system is that it automatically reconstructs the depen-
dencies between log entries and alarms in the step of investiga-
tion [30, 54]. The alarms of conventional EDR systems are isolated.
Thus, it is particularly hard for security admins to combine related
alarms or recover their root causes. On the flip side, P-EDR systems
use provenance graphs to model the data and control dependencies
between events in provenance data, automatically linking related
alarms and their root causes together, leading to more interpretable
detection results. In P-EDR systems [14, 24, 32, 33, 54, 70, 77], a
provenance graph is a directed graph constructed from system audit-
ing events, where each event represents a system activity. Formally,
system auditing events are represented as three-tuples ⟨subject, op-
eration, object⟩. The subject and the object represent system entities,
and the operation represents an action performed by the subject
on the object. The typical values for the three-tuple are shown in
Table 1, in which↔means the entities on both sides can be subjects
or objects. In a provenance graph, the nodes are system entities,
and the edges are the actions. The directions of edges represent the
dependencies of data or control flow.

2.3 Example Provenance Analysis
In Figure 2, we show an example of the provenance graph for
a real APT attack. In this attack, the adversary first hijacks the
Windows IIS Web Server “w3wp.exe” through a web shell. Then
she uses “csc.exe” to execute a trojan. The adversary also runs the
remote tools “GotoHTTP_x64.exe” to modify the registry privilege
escalation. Lastly, she leaves a backdoor “Wlw.exe” for intranet
blasting with “fscan.exe” and uses “wevtutil” to clear footprints.
The orange nodes are alarms generated by the detection system.

In this example, we notice that the provenance graph links multi-
ple alarms based on their dependencies. It also backtracks the entry
of the attacks so that security admins can recover the root causes of
alarms. Therefore, security analysts consider P-EDR systems more
accurate and intuitive for APT attack detection and investigation,
leading to the popularity in academia [14, 24, 32, 33, 54, 70, 77].
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Figure 2: An example of an APT attack that hijacksWindows
IIS Web server and leaves a Cobalt Strike (CS) backdoor for
lateral movement. Then it uploads the remote control tool
for privilege escalation.

2.4 Ethical Consideration of This Work
This work was approved by our institution, and we strictly follow
our institution’s research data management policy, including data
storage, sharing, and disposal. The data collected from the partici-
pants in the interviews and questionnaires were carefully processed.
In both the interview and the online questionnaire, we acquired
the consent of the participants and confirmed that our interviews
accurately reflected their own opinions.

3 ONE-TO-ONE INTERVIEWS
To seek feedback on the effectiveness of P-EDR systems and iden-
tify the decision factors for the adoption of P-EDR systems in the
industry, we conducted one-on-one interviews with experienced
technical managers from top IT companies.

3.1 Participant Recruitment
We recruited participants from EDR developers and consumers,
who have the first-hand experiences of EDR in the industry. We
chose 6 EDR vendors from top-tier endpoint security companies,
and 6 consumers from diverse kinds of organizations, including
IT, education, transportation, and manufacturing. The consumers
of EDR and P-EDR systems include ByteDance (the world-leading
social media provider), MeiTuan (one of the leading AI companies
in China), Peking University (one of the most famous universities
in China), S.F Express (the biggest express company in China), and
FiberHome (the famous manufacturer for IoT devices). The vendors
of EDR and P-EDR systems are among the top security vendors in
China [2] and the world [1], including Tencent Security [9], Trend
Micro [11], Sangfor [8], Rising [7], and NSFOCUS [6].We first found
the points of contact (POC) of EDR through the company website,
social media, and product technical support list, and these POCs
recommended 12 technical managers. Ten managers (average of
10+ years of experience) agreed to participate in our interview.
Participant Background: Our participants are experienced lead-
ers in security. They have, on average, 10.5 years of experience,
ranging from 5-21 years. Each of them leads a technical team with
25-30 engineers on average. Our participants are all very familiar
with provenance analysis techniques and P-EDR systems. Specifi-
cally, 𝐸1 and 𝐸2 are already using P-EDR systems in their companies,
and 𝐸6 and 𝐸7 are the developers of the P-EDR systems. 𝐸3, 𝐸4, and

𝐸5 who are not using P-EDR are familiar with provenance analysis
techniques and are considering using these techniques in the future.
Lastly, the remaining three (𝐸8, 𝐸9, and 𝐸10) who are not develop-
ing provenance analysis techniques in their current products are
also very knowledgeable about the recent progress in academia and
may adopt P-EDR when it is necessary. Table 2 shows the detailed
background information of the participants.

3.2 Interview Methodology
We interviewed each manager via a 30-min online video conference.
All managers chose to participate in our study voluntarily as they
expect our research results can better help them develop and use
EDR/P-EDR systems. To ensure the objectiveness of our interview,
we followed the principles in Qualitative Interview Design [50, 68].
Specifically, we explained the purpose of our interview before the
interviews and told them how to get in touch with us later if they
want to. We designed all the interview questions to be open-ended,
and the participants are able to choose their own terms when an-
swering questions. We also designed our questions to avoid words
that might influence answers.
InterviewQuestions: Our interview questions consist of two parts.
The first part is the background, where we ask the participants
to introduce their technical backgrounds, including organization
name, job title, years of experience, team size, and experiences with
P-EDR systems. The second part of our interview questions is the
opinion session, which includes questions about the participants’
opinions on the key decision factors and the limitations of EDR and
P-EDR systems. Below are our interview questions:
• Do you think P-EDR systems are more effective than conven-
tional EDR systems?

• What are the limitations of existing EDR/P-EDR products?
• What are the key decision factors when you decided to adopt
your current EDR/P-EDR solution? Are these factors must-meet
or optional? Can you rank these factors?

• What metrics do you use to measure these key decision factors?
Besides the background session and the opinion session, we

also asked the participants several casual questions to help them
relax. These questions are not related to our research objective but
facilitate the participants to share their true opinions [50].
Data Processing:With the authorization of the interviewees, their
identities were anonymized, and their interviews were saved in au-
dio form. We transcribed the audio into text using a popular Speech-
to-Text conversion tool. Two authors independently inspected the
converted texts and cross-checked the results. We sent the verified
texts back to the interviewees for confirmation. The data retention
period is one year, and we will get further authorizations from the
interviewees when the retention period expires.

3.3 Results
Effectiveness of P-EDR: Table 3 summarizes the answers of
our participants regarding the effectiveness of P-EDR. Overall, all
of them agree that P-EDR systems are more effective than con-
ventional EDR systems, and four managers have already adopted
P-EDR systems, which will be further detailed in Section 7.
Key Decision Factors:We have summarized seven key decision
factors mentioned by the participants in Table 4, includingNetwork,
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Figure 3: The workflow of using P-EDR to detect attacks

Table 2: Background information of the interview participants

ID Role Company Name Industry Area Job Title Years of Exp. Team Size Adopt P-EDR
E1

Consumer

ByteDance Technology Head of Server Security 6 20∼25 Yes
E2 MeiTuan Technology Cloud Workload Security Leader 5 20∼25 Yes
E3 Peking University Education Director of Network Security Office 19 10∼15 No
E4 S.F. Express Transportation Endpoint Security Manager 10 20∼25 No
E5 FiberHome Manufacturing Endpoint Security Manager 8 5∼10 No
E6

Vendor

Tencent Security Security Director of EDR 10 10∼15 Yes
E7 Trend Micro Security Detection Engine Architect of EDR 9 20∼25 Yes
E8 Sangfor Security Director of Workload Protection Product 8 65∼70 No
E9 Rising Security EDR Architect 21 50∼55 No
E10 NSFOCUS Security EDR Product Manager 9 30∼35 No

Table 3: Interview results for P-EDR effectiveness

Answers Participants
Limitations of EDR/P-EDR
High Client-Side Overhead E1, E2, E3, E4, E5, E6, E7, E8, E9, E10
Too Many False Alarms E1, E2, E4, E5, E6, E7, E8
Incomplete Rule Set E1, E2, E4, E5, E7, E9, E10
Data Privacy E3
Effectiveness of P-EDR
P-EDR Already Deployed E1, E2, E6, E7
P-EDR Better Than EDR E1, E2, E3, E4, E5, E6, E7, E8, E9, E10

Storage, Memory, Client-Side Overhead, Interpretation, Alarm
Triage, andAccuracy. Particularly,Accuracy represents the detection
effectiveness of a P-EDR system, while the other factors represent
the operating cost of a P-EDR system. Thus, we further classified
them into three major categories: “Computing Cost” (Network, Stor-
age, Memory, Client-Side Overhead), “Labor Cost” (Interpretation
and Alarm Triage), and “Performance” (Accuracy). Among these fac-
tors, we have identified four must-meet factors (i.e., highlighted by
all the participants who mentioned such factors), includingMem-
ory, Client-Side Overhead, Interpretation, and Alarm Triage. For
clarity’s sake, we present these must-meet factors in the workflow
of P-EDR (see Fig. 3).

Further, we summarize the expected values for these key decision
factors provided by each participant in Table 5. The last row of
Table 5 shows the reference ranges for each decision factor. The
lower bound and the higher bound of each reference range are
the minimum and maximum estimated values provided by our
participants, respectively. We next depict each of them.

Computing Cost: For the computing cost, the participants have
expressed concerns about the average memory consumption on
the server side (ServerMem). On average, they expect the server
to consume less than 27.6MB of memory per monitored host.

The developers of EDR systems (𝐸6, 𝐸7, 𝐸8, 𝐸9 and 𝐸10) consider
network cost and storage cost as optional decision factors. In other
words, the developers agreed that the network and storage costs
were important, but they were acceptable if a P-EDR system did not
meet the requirements. With respect to the metrics, the developers
agreed to use the average bandwidth utilization of a P-EDR and the
average disk utilization to measure the network cost and storage
cost, respectively. The consumers of EDR systems (𝐸1, 𝐸2, 𝐸4, and
𝐸5) did not mention the requirements for network and storage costs,
except for 𝐸3. 𝐸3 requires the storage cost should not exceed 10%
of the total disk size of the monitored systems.

For the client-side overhead, the participants believe that two
metrics are useful. The first metric is the average runtime over-
head on the monitored machine (RT OH), and the second one
is the average memory consumption on the monitored machine
(ClientMem). On average, the participants expect a P-EDR system
introduces a performance overhead of less than 5.2% and consumes
less than 160MB of memory on each monitored host.
Labor Cost: Labor cost lies in the interpretation and alarm triage.
For the cost of interpretation, the four participants (𝐸1, 𝐸2, 𝐸6,
and 𝐸7) who are either using provenance analysis techniques or
developing provenance-analysis-based solutions also marked the
interpretation cost as a must-meet factor. They agreed to use the
average number of nodes of provenance graphs of alarms as the
metric for the interpretation cost. The reason is that P-EDR systems
generate a provenance graph for each alarm to reveal its context.
Thus, the size of the provenance graphs determines the workload
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Table 4: Definitions of the Seven Key Factors

Factor Description
Computing Cost

CC1: Client-Side Overhead
howmuch an EDR system slows down the
protected hosts

CC2: Network bandwidth occupied by transmitting sys-
tem audit logs to the server

CC3: Storage hard-disk used to store the system logs

CC4: Memory
server memory size required to analyze
the collected logs

Labor Cost
LC1: Alarm Triage man-hour required to detect false alarms

LC2: Interpretation man-hour required to interpret attack re-
sults

Performance
Accuracy attack detection accuracy

for the security team to interpret the alarms. Particularly, the par-
ticipants expect the number of nodes in provenance graphs to be
between 10 to 100.

For alarm triage, the participants agreed to use the average num-
ber of alarms per monitored host per day to measure the triage
cost. Even though precision is directly related to the triage cost,
the average number of alarms per monitored host per day is more
intuitive for cost estimation since it is positively correlated with the
number of alarms. 8 out of the 10 participants mentioned that their
teams or customers have a fixed number of analysts to investigate
the alarms, and thus they can only process a limited number of
alarms per day. The expected average number of alarms per host
per day ranges from 0.001 to 0.1.
Performance: Only two participants (𝐸2 and 𝐸3) considered accu-
racy as one of the decision factors for choosing EDR/P-EDR systems.
Others argue that while accuracy is important, accuracy-related
issues can be resolved by upgrading security rules or models within
a reasonable time. In terms of the metrics, both 𝐸2 and 𝐸3 agreed
to use precision to measure the accuracy. The reason is that, in
practice, the recall and other metrics are difficult to evaluate due to
the lack of ground truth. The expected value for precision ranges
from 0.85 to 0.9. Note that the participants acknowledged the im-
portance of precision, but they preferred to use the average number
of alarms per monitored host per day to evaluate the performance
of a P-EDR system.

4 ONLINE QUESTIONNAIRE
The interview participants helped us identify the key decision fac-
tors in adopting P-EDR systems, and provided the reference ranges
for the metrics used in these decision factors. However, these ref-
erence ranges were too coarse-grained and some participants did
not provide their reference ranges for certain metrics. To eliminate
research bias, we further designed an online questionnaire and
recruited a broader scope of security engineers from a variety of
companies to participate in our online questionnaire, and obtain
more accurate reference values of these metrics.

4.1 Participant Recruitment
To recruit more professionals who have experiences with EDR sys-
tems, we disseminated our recruitment in two ways. First, we asked
the interviewees in Table 2 to help disseminate our recruitment
information to their colleagues and security engineers who have
experiences with P-EDR and EDR systems. Second, we searched on
business and employment-focused social media platforms such as
LinkedIn [4] and MaiMai [5] (the Chinese LinkedIn) to actively con-
tact the people who are working on endpoint security. Specifically,
we selected the keywords, “Network Security”, “Endpoint Detection
and Response”, and “Endpoint Security”, to narrow down the search
scope to get the contacts of people that are knowledgeable with
EDR. We phoned them first to introduce our purpose and know
more about their backgrounds. For the qualified candidates, we
invited them to participate in our online questionnaire if they were
willing to get involved.
Participant Backgrounds: We invited 100+ participants in total,
and 48 completed the questionnaires. The background information
of the participants has been made available on our website [3].
The participants of our questionnaire come from companies in
different industrial sectors, including government, IT technology,
the security industry, financial services, manufacturing, etc. They
all have experiences in enterprise security and have 4.4 years of the
APT combating experience on average.

4.2 Questionnaire Survey Methodology
We sent the online questionnaire link to the participants. Same as
the participants of our interviews, we offered the participants of
our online questionnaire to use our survey results for improving
their uses of EDR/P-EDR systems. We controlled the length of the
questionnaire within the range that the respondents can complete
the questionnaire within 10 minutes to ensure a high response
rate [10]. After we received the 48 responses, we further conducted
attention-check to remove low-quality responses. Specifically, we
computed the average answering time and the average percentage
of unknown answers in a response. We then rejected a response if
it was an outlier in terms of the answering time or the percentage
of unknown answers.
Questionnaire Questions: We design the questionnaire based on
the results from the interview. In the interview, we have identified
four must-meet factors:Memory, Client-Side Overhead, Interpre-
tation, and Triage. Thus, in the online questionnaire, we have four
questions to determine the fine-grained reference values for these
four must-meet factors, respectively. For each question, we divide
the reference range obtained in the interviews into five equal-sized
sub-ranges and use five options to represent these sub-ranges. In
this way, we can obtain more fine-grained results for each decision
factor. Note that we have an option “I don’t know” to allow the
participants to omit the questions that they are not confident about.

We then followed the principles in How to Design and Frame
a Questionnaire [25] to curate the questionnaire. Specifically, we
sent our questionnaire to the interview participants and asked
them to confirm that our question design follows their interview
answers and that descriptions can be easily understood. The detailed
questionnaire can be accessed at our website [3].
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Table 5: Interview results for key decision factors. Each cell for a factor shows a rank of importance provided by the corre-
sponding participant followed by a list of metric values to evaluate the factor. Symbol ∗ indicates the must-meet factor.

Computing Cost Labor Cost Performance
ID Network Storage Memory* Client-Side Overhead* Interpretation Cost* Alarm Triage Cost* Accuracy

E1 None None 3, ServerMem*:
30MB/host

2, ClientMem*: 100MB/host,
RT OH*:1%

4, Number of
nodes*: 100

1, Alarms*:
0.001/day/host None

E2 None None 3, ServerMem*:
50MB/host

1, ClientMem*: 150MB/host,
RT OH*:5%

4, Number of
nodes*: 10

2, Alarms*:
0.001/day/host

5, Precision,
> 0.85

E3 None 3, Disk:
60MB/day/host

2, ServerMem*:
30MB/host,

1, ClientMem*: 100MB/host,
RT OH*:5% None None 5, Precision,

> 0.9

E4 None None 3, ServerMem*:
50MB/host,

1, ClientMem*: 200MB/host,
RT OH*:10% None 2, Alarms*:

0.004/day/host None

E5 None None 3, ServerMem*:
30MB/host,

1, ClientMem*: 100MB/host,
RT OH*:5% None 2, Alarms*:

0.02/day/host None

E6 5, Net:
100MB/day/host

6, Disk:
15MB/day/host

3, ServerMem*:
30MB/host,

1, ClientMem*: 200MB/host,
RT OH*:1%

4, Number of
nodes*: 100

2, Alarms*:
0.1/day/host None

E7 5, Net:
10MB/day/host

6, Disk:
70MB/day/host

3, ServerMem*:
20MB/host,

1, ClientMem*: 50MB/host,
RT OH*:5%

4, Number of
nodes*: 100

2, Alarms*:
0.1/day/host None

E8 5, Net:
42MB/day/host

4, Disk:
100MB/day/host

3, ServerMem*:
26MB/host,

2, ClientMem*: 250MB/host,
RT OH*:5% None 1, Alarms*:

0.05/day/host None

E9 4, Net:
1MB/day/host

3, Disk:
15MB/day/host

2, ServerMem*:
10MB/host,

1, ClientMem*: 150MB/host,
RT OH*:10% None None None

E10 4, Net:
100MB/day/host

5, Disk:
35MB/day/host

3, ServerMem*:
30MB/host,

1, ClientMem*: 100MB/host,
RT OH*:5% None 2, Alarms*:

0.1/day/host None

Reference
Range

1∼100MB
/day/host

15∼100MB
day/host 10∼50MB/host 50∼250MB/host,

1∼10% 10∼100 0.001∼0.1
/day/host > 0.85

Table 6: Summarized results of online questionnaire

Must-meet Factors Summarized Result
Memory < 20 MB/host
Client-side Overhead (RT OH) < 3 %
Client-side Overhead (ClientMem) < 100 MB/host
Interpretation < 50 nodes
Alarm Triage < 0.1 alarms/day/host

Data Processing: We use a SaaS-based questionnaire platform for
managing the questionnaire data. Two authors independently com-
puted questionnaire data statistics and cross-checked the results.
The questionnaire data retention is one year, same as that of the
interview data.

Memory

Client-side
RT OH

Client-side
Memory

Interpretation

Alarm
Triage

2

1

2

6

4

23

20

22

9

2

5
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3

15

9

3

4

5

2

8

4

5

4

4

14

0

1

1

1

0

I Don't Know Range 1 Range 2 Range 3 Range 4 Range 5

Figure 4: Metric Results of Our Questionnaire Study.

4.3 Results
In total, we received 48 questionnaire responses. The average an-
swering time was 7 minutes) and the average percentage of un-
known answers was 14%. We rejected 11 responses as they were

outliers in terms of the answering time (<100 seconds) or the per-
centage of unknown answers (>50% of the answers). Thus, we had
37 valid responses, and the distribution of the answers for each
option is shown in Figure 4. For each key factor, we chose the
option selected by the largest number of participants as the refer-
ence value. We summarize the results of the reference values in
Table 6. These results are later used to guide our literature survey
and measurement study.

5 LITERATURE SURVEY
The research objective of our literature survey is to investigate the
P-EDR systems described in recent publications and check whether
they can satisfy the four must-meet factors (Client-Side Overhead,
Memory, Interpretation, and Alert Triage).

5.1 Methodology
We systematically inspected all the provenance analysis papers pub-
lished in top conferences and journals during 2017-2022, including
IEEE S&P, USENIX Security, CCS, NDSS, ACSAC, TDSC, and TIFS.
We carefully read these papers to classify whether they are in our
scope. Finally, we selected 20 papers on P-EDR systems and classi-
fied their approaches into rule-based approaches (5), anomaly-based
approaches (7), and investigation approaches (8).

For these 20 approaches, we investigate whether they have been
evaluated against the seven decision factors. Specifically, two au-
thors independently inspected the evaluation results of these 20
papers on the four must-meet factors and cross-checked the results.
Table 7 shows the reported values for each paper. For the systems
that were evaluated on different datasets, we calculate the average
values on different datasets listed in their papers by default. For
Accuracy, we cannot simply use their average reported values, and
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thus we summarized the range of the reported values. We use “−”
to indicate an approach was not evaluated against a decision factor.

5.2 Surveyed Papers
We can roughly divide existing approaches into two categories:
Rule-based Detection and Anomaly-based Detection [35].
• Rule-based detection approaches leverage prior expert knowl-
edge and experience of attacks to design policies for event match-
ing and behavior extraction. Tag propagation and rule match-
ing are the two most commonly used methods. SLEUTH [32]
is the first provenance-based tag policy framework that assigns
trustworthiness and confidentiality tags to system entities and
propagates on the provenance graph. MORSE [33] is designed
based on SLEUTH with refined policies to reduce the amount of
false positive alarms. HOLMES [54] and RapSheet [29] leverage
the MITRE ATT&CK knowledge-base to configure their rules,
mapping low-level events to high-level Tactics, Techniques, and
Procedures (TTPs), High-level Scenario Graph (HSG) and Tactical
Provenance Graphs (TPG) for attack detection and investigation.
Pagoda [72] combines the abnormality of a single path and the
entire provenance graph.

• Anomaly-based detection systems are diverse in strategies. Over-
all, they always learn normal behaviors from historical data
and treat deviations from normal behavior as malicious. Both
StreamSpot [51] and UNICORN [27] extract the provenance
graph into sketches, a vector, as features for clustering and label
the outliers as anomalies. UNICORN chooses StreamSpot as the
baseline and uses the public dataset collected by StreamSpot,
achieving better performance. ProvDetector [70] leverages prob-
ability density-based Local Outlier Factors to detect stealth mal-
ware paths, embedded into fixed length vectors using graph
embedding methods. ZePro [66] uses Bayesian Networks for
zero-day attack path identification, and P-Gaussian [73] uses
Gaussian Distribution for sequence similarity detection. Poirot
needs to manually design Query Graph (QG), generated from
Cyber Threat Intelligence (CTI) report with pre-known expert
knowledge. SHADEWATCHER [78] extracts the interaction from
the provenance graph and constructs a recommendation model
for learning to classify system entity interactions into normal
and adversarial.

5.3 Results
We next report our analysis of these 20 approaches for each of the
must-meet factors.
Client-Side Overhead. We found that only one paper (RTAG)
provided evaluations against the client-side overhead. RTAG is an
improvement on RAIN, that implemented the system logging logic
with comprehensive semantics to record whole-system activities
to enable cross-host attack investigation. It mainly measured the
runtime overhead and compared it with existing full-system prove-
nance systems. The other 19 systems focus on building detection
and investigation algorithms and rely on third-party collectors to
monitor provenance data. Thus, these papers omit the evaluations of
the client-side overhead introduced by the collectors.

Due to the lack of evaluations on provenance collectors in these
papers, we further surveyed the available provenance collectors

used in industry and academia and listed them in Table 8. Unfor-
tunately, we found that there were no systematic evaluations of
the client-overhead introduced by existing provenance collectors.
Although there were six collectors that had evaluated the runtime
overhead, the three most commonly used collectors, Sysdig, Auditd,
and ETW, did not have evaluations of their introduced overheads
on other client-side applications. Even worse, none of the existing
provenance collectors can satisfy the reference value of runtime
overhead (< 3%). Moreover, we found no evaluations of the memory
consumption for these collectors. Therefore, we further carried out
a measurement study on these three collectors in Section 6.1.
Memory. 8 out of 20 approaches have evaluated the memory con-
sumption on the server side, but none of them directly report the
average memory consumption for each monitored machine, and we
calculate this value by dividing the overall memory consumption
by the number of hosts in their datasets. The results show that
most of the reported values are much higher than the reference
values we obtained (< 20MB/host), except for RAPID [46]. Particu-
larly, SHADEWATCHER exceeds the expected value by 209 times,
which indicates that it can hardly be deployed in the industrial en-
vironment. Although RAPID can satisfy the requirement, it needs
to utilize third part detection systems for investigation. These re-
sults indicate that there is a gap in the methodology of memory
consumption evaluation between academia and industry.
Interpretation. The investigation cost is measured by the size
of generated provenance graphs. This metric is well-evaluated
by existing systems. However, the results vary from 12 nodes to
1.76 × 105 nodes as this factor is highly correlated with the system
design. In general, rule-based systems, such as SLEUTH, MORSE,
and HOLMES, can generate smaller provenance graphs in alarms
than anomaly-based systems, such as StreamSpot and UNICORN.
Nevertheless, most of the rule-based and anomaly-based systems
have to optimize their interpretation cost by 1 - 4 orders of magni-
tude in order to meet the industrial requirements (<50 nodes).
Alarm Triage. None of the papers provide evaluations for the cost
of alarm triage. In fact, all these papers ignore the factor of triage
cost when they evaluate the accuracy of a P-EDR system. Note that
in practice, the ratio of attack-related data is very low (less than
0.1%) [30, 48]. Thus, even though they can achieve high accuracy
(0.95 averaged from their best-reported values), the triage costs are
usually not acceptable in practice.

5.4 Summary
Our literature survey shows that almost all the existing systems
do not provide evaluations against the four must-meet factors. In-
terpretation cost is the only factor that is evaluated by most of the
papers, while a large proportion of the surveyed systems cannot
meet the requirement from the industry. Similarly, a small set of
papers provide evaluations for part of the four factors, and their
results show that these systems fail to satisfy the reference values
obtained from our studies.

6 MEASUREMENT STUDY
To better understand whether existing P-EDR systems can satisfy
the four must-meet factors and how much improvement on these
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Table 7: Summarization of literature review. The values are directly reported or averaged the values on different datasets listed
in their paper. The empty cells mean the corresponding paper does not evaluate the corresponding decision factor.

Type Tool Name
Client-side Overhead Storage

(/MB/host/day)
Memory
(MB/host)

Alarm Triage
(#Alarm/host/day)

Interpretation
(#Node, #Edge) Precision Recall AccuracyAgent RT OH(%) ClientMem

(MB)

Detection

SLEUTH [32] Auditd - - 362.87 81.93 - (52, -) - - -
MORSE [33] Auditd, DTrace - - 1266.67 230.4 - (283, -) ≈ 0 1.00 -
HOLEMS [54] Auditd, Dtrace, ETW - - 179.23 104.76 - (-, 400) 1.00 1.00 1.00
RapSheet [29] Symantec EDR - - 358.00 - - (12, 39) 0.26 1.00 0.75 - 0.95
Pagoda [72] Karma [18], PASS [55] - - 1126.40 - - (13315, 10964) 0.92-1.00 1.00 0.75 - 0.95
StreamSpot [51] SystemTap [36] - - - - - (8315,173857) 0.50-1.00 - 0.50 - 0.80
UNICORN [27] CamFlow [58] - - 24917.33 - - (1.76 × 105, 2.82 × 106) 0.80 - 0.99 0.88 - 1.00 0.84 - 0.99
ProvDetector [70] - - - - - - (-, -) 0.96 0.99 -
ZePro [66] - - - 266.67 57.14 - (1853, 2249) - - -
P-Gaussian [73] - - - 864 152.5 - (1949, 3045) - 0.66 - 0.94 0.65 - 0.95
Poirot [53] Auditd, Dtrace, ETW - - 6500.55 122.39 - (-, -) 1.00 1.00 1.00
SHADEWATCHER [78] Auditd - - 59112.73 4194.30 - (-, -) 0.86 - 1.00 0.95 - 1.00 0.98 - 1.00

Investigation

RTAG [38] RAIN 4.84 - 1536 - 4096 - - (164.67, 3200) - - 1.00
MCI [41] Auditd, Dtrace, ETW - - - - - (34.56, 62.87) 0.92- 1.00 0.95 - 1.00 -
PrioTracker [47] Auditd, ETW - - 998.64 - - (-, 1219) - - -
NoDoze [30] Auditd, ETW - - 428.90 - - (14, 14) 0.50 1.00 0.86
ATLAS [14] - - - 2286.93 - - (-, -) 0.91 0.97 0.99
DEPCOMM [74] Sysdig - - - - - (289, -) - - -
DEPIMPACT [24] Sysdig - - - - - (-, 234.27) 0.79 - 0.85 1.00 -
RAPID [46] Auditd, Dtrace, ETW - - 4743.40 30.04 - (-, -) - - -

Table 8: List of existing provenance data collectors. “RT OH”
is the average runtime overhead of applications in their eval-
uations. “Mem” is the average memory consumption.

Platform Owner Affect RT OH (%) Mem (MB)
Sysdig [16] Linux Sysdig.Inc [24, 74] NA NA

Auditd [62] Linux Linux Foundation
[30, 32, 33,
41, 46, 47,
53, 54, 78]

NA NA

DTrace [17, 71] Linux Sun Microsystems [33, 41, 46,
53, 54] 3.2 NA

Camflow [58] Linux University of Cam-
bridge [27] 9.7 NA

LTTng [21] Linux EfficiOS NA NA NA

ETW [22] Windows Microsoft [30, 41, 46,
47, 53, 54] NA NA

KennyLoggings [57] Linux UIUC NA 4.6 NA
Hardlog [12] Linux Microsoft NA 6.3 NA

Quicklog [31] Linux Florida State Univer-
sity NA 5.3 NA

SystemTap [23, 36] Linux Linux Foundation [51] NA NA

RAIN [37] Linux Georgia Institute of
Technology [37, 38] NA NA

Karma [18, 65] Linux Indiana University [72] NA NA
PASS [55] Linux Harvard University [72] 10.5 NA

factors is needed, we conducted a measurement study on the repre-
sentative systems described in the surveyed papers and obtained
their metric values to compare with the collected reference values.
We next describe our measurement study on both the client-side
and the server-side.

6.1 Client-Side Measurement Study
We empirically study the Client-Side Overhead factor using three
representative collectors. We deployed these collectors to hosts
with different hardware configurations and also measured their
introduced overheads on seven representative applications.
Representative Collectors. In our measurement study, we chose
three most widely used industrial open-source collectors, Sysdig,
LTTng, and Auditd, from the collectors listed in Table 8. These
three collectors are adopted by the majority of the existing P-EDR
systems. They have industrial quality and are actively maintained.
We excluded DTrace because it has a similar performance to Sysdig,
and it requires significant technical knowledge to utilize and opti-
mize, which may cause potential bias [20]. We did not measure the

client-side overhead of ETW due to two reasons. First, we found
no way to turn off the kernel module of ETW completely. Second,
ETW does not have an official user-space collector, and our study
of it could be significantly biased. We also excluded other collectors
because they are outdated and lack downstream users.
Representative Applications. We chose seven representative
applications used in the surveyed papers, which can be classified
into two categories:
• I/O-intensive applications: We first chose commonly used applica-
tions of C++, including Nginx [63], Redis [49], Postmark [39]. We
also chose two applications of other languages, namelyDjango [42]
for Python and http [26] for Golang.

• CPU-intensive applications:We choseOpenSSL [61] and 7-ZIP [56].
Experiment Setup. In our measurement study, we followed the
minimal workload principle to avoid possible biases introduced by
extra provenance data processing. We simply directed the three
collectors to dump their collected data into a file in an in-memory
file system. Note that this protocol measures the lower bound of the
client-side overhead of the provenance collectors as they usually
contain more complex processing logic or need to dump data into
much slower devices, such as networks and hard disks. Therefore,
we expect the real client-side overhead of P-EDR systems should
be higher than the values we reported in this paper. We ran exper-
iments on these three tools under four hardware configurations
with different numbers of cores and different sizes of memory on
both virtual and physical machines, as shown in Table 9.

We ran these applications using their official benchmarks while
measuring their performance. Specifically, we used wrk [60] with
1,000 concurrent connections to benchmark Nginx. For Redis, we
used the redis-benchmark configured to send 1,000,000 requests and
measure the speed of operation get. We used the built-in bench-
mark with the configuration of manipulating 500 files concurrently
and launching 100,000 transactions to evaluate the performance
of PostMark. We used the Phoronix Test Suite, one of the most
comprehensive benchmark suites of web applications [43, 64], to
benchmark Django and http. For OpenSSL, we relied on the default
speed benchmark configured to utilize all CPU cores and measure
the time to compute one rsa4096 signature. For 7-ZIP, we used the
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Table 9: Hardware configurations for ourmeasurement study

Physical
Machine

C1 C2 C3 C4
1CPU + 2GB 4CPU + 8GB 16 CPU + 32GB 32 CPU + 64GB

Virtual
Machine

C5 C6 C7 C8
1CPU + 2GB 4CPU + 8GB 16 CPU + 32GB 32 CPU + 64GB

built-in benchmark configured to utilize all CPU cores and measure
the compression speed in MIPS. We repeated each experiment ten
times and reported the average metric values of the benchmarks.
Runtime Overhead. We show the experiment results in Table 10.
We notice that for I/O-intensive applications, there are relatively
high overheads compared to the case without turning on the col-
lectors. We also notice that as the number of CPU cores increases,
the overhead decreases. This is because all the collectors are single-
threaded, which can only utilize one CPU core. When the number
of CPU cores is small, the collectors will compete for the resources
with the applications. For example, for the single-core machines
(C1 and C5), the collectors add at most 821% more overhead to
Nginx. Particularly, we find that Auditd introduces a significant
overhead because it uses Netlink and has heavy processing logic.
For CPU-intensive applications, the overheads compared to the
case without turning on the collectors are much smaller, which is
less than 3% on average across all configurations. To conclude, all
the provenance collectors introduce inevitable overhead compared
to the case without turning on the collectors since they record and
consume the provenance events.
Memory. The memory consumption of the collectors is listed in
Table 11. Memory consumption of collectors consists of two parts:
user-mode and kernel-mode memory. For Sysdig, LTTng, and Au-
ditd, the user-mode memory consumption is 30M, 15.9M, and 1.9M,
respectively, which is independent of hardware configurations and
applications. For kernel-mode memory cost, Auditd allocated a
fixed size buffer of 64MB by default; Sysdig and LTTng allocated a
fixed size buffer for each core, 8MB and 2MB respectively.

6.2 Server-Side Measurement Study
In this section, we empirically study theMemory, Interpretation,
and Triage factors using three representative EDR systems.
Representative P-EDRs.We chose ProvDetector [70], UNICORN [27],
and HOLMES [54] due to the following reasons. First, these three
systems have the highest precision according to Table 7. Since
the average number of alarms approximates the precision, we ex-
pected these three systems to have the lowest number of alarms
per host per day. Second, these three systems cover the two cate-
gories of P-EDR systems. HOLMES is one of the state-of-the-art
rule-based systems, while UNICORN and ProvDetector are the two
leading learning-based systems. We cannot implement MORSE [33],
Poirot [53], and RapSheet [29] because they rely on unpublished
rules or CTI reports. We fail to implement SHADEWATCHER [78]
because it depends on an unpublished recommendation model.
We omit SLEUTH [32] and StreamSpot [51] because they are infe-
rior to HOLMES and UNICRON, respectively. We exclude pagoda,
ZePro, and P-gaussian because they adopt similar techniques as
ProvDetecor, and ProvDetecor is the most recognized approach
among them. We also exclude the investigation systems like Pri-
oTracker [47], NoDoze [30], ATLAS [14], and DEPCOMM [74]

because they need to work with unpublished third-party attack
detection tools. We implemented HOLMES using the detection
rules provided in its paper and configured it to achieve the best
performance based on our empirical knowledge. We implemented
ProvDetector according to the description in its paper and adopted
its default configurations. We directly used the published source
code of UNICORN and adopted its default parameters but modi-
fied its data parser to accept our data format. We conducted our
experiments on the following datasets.
Datasets. We used five datasets to evaluate the server-side cost of
ProvDetector, UNICORN, and HOLMES. Among the three datasets,
DARPA-Cadets, DARPA-Theia, and DARPA-Trace are open datasets
from DARPA [59]. Production dataset is the real auditing data
collected from a security company AnonymousSec. Simulation
dataset is an in-lab dataset we created for attack simulation. We
provide more information of these datasets in Table 13.

Particularly, DARPA-Cadets contains three attacks during a 3-
day-long period. The attacker exploited the vulnerabilities of an
Nginx server and achieved C&C by injecting the payload to an
“sshd” process. The attacker repeated the attack 3 times. He failed
the first 2 times but succeeded in the last one. DARPA-Theia con-
tains one attack. The attacker first exploited the Firefox backdoor
to install executable files to disk. After two days, he used the vul-
nerability of a browser extension and resumed the prior attack by
injecting the file that had been previously dropped to disk into the
“sshd” process. DARPA-Trace contains two attacks. The first one
is a Firefox backdoor with the DRAKON malware in memory, and
the second one is a Pine backdoor with a DRAKON dropper.

The Production dataset was collected by AnonymousSec’s EDR
deployed in the customers’ network, which includes 300+ servers
and working machines of employees of 10 real customers from
AnonymousSec, including schools, research institutes, factories,
and healthcare providers. We monitored the customers for five
days. We used the first three days (training period) to train the
detection model and used the last two days (test period) for testing.

The Simulation dataset was collected from five hosts: one Ubuntu
20.04 server (U1), two Windows Server 2012 R2 Datacenters (S1,S2),
one Windows Server 2019 Datacenter (S3), and one Windows 10
desktop host (D1). We deployed Apache and PostgreSQL on Win-
dows Servers and Nginx and PostgraSQL on Ubuntu 20.04 to sim-
ulate servers in the AnonymousSec. We used the Windows 10
desktop to simulate the PCs used by the employees in the Anony-
mousSec. The collected data had the same format as Sysdig for
Linux and ETW for Windows.
Memory. Table 13 shows the memory consumption results. The
memory consumed by HOLMES and ProvDetector was positively
correlated with the data volume of the provenance graphs, which
both exceeded the reference value (<20MB/host) by 1-2 orders of
magnitude. For UNICORN, it had a relatively stable memory con-
sumption because it used Parallel SlidingWindows (PSW) algorithm
to analyze the whole provenance graph, which was independent of
memory constraints. However, it exceeded the reference value by
11.9 times. Therefore, none of these systems meet the requirement
for theMemory factor and more memory consumption optimiza-
tions are needed for these systems.
Interpretation. Table 14 shows the result for the Interpretation
factor. The provenance graphs generated by ProvDetecor can satisfy
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Table 10: Application benchmarking results. We measure the processing time per request/transaction seven representative
applications. We report the median values across 10 runs. All values are shown as the relative runtime overhead (%).

Application Collector C1 C2 C3 C4 C5 C6 C7 C8 Avg

Nginx
Auditd 597.30 101.30 34.60 34.80 821.10 186.30 23.70 10.90 226.25
Sysdig 70.20 26.10 14.60 15.60 68.10 21.20 9.50 7.20 29.06
LTTng 24.80 10.70 10.00 11.70 26.30 25.80 7.00 1.40 14.71

Redis
Auditd 457.00 58.10 41.70 50.20 512.00 53.20 46.00 43.20 157.67
Sysdig 17.90 20.00 17.20 16.20 21.00 16.40 15.60 5.70 16.25
LTTng 8.30 8.40 10.00 5.10 13.60 6.90 1.40 2.70 7.05

Postmark
Auditd 406.00 81.80 84.30 78.40 658.00 149.40 157.20 116.20 216.41
Sysdig 88.80 19.20 18.00 22.00 98.80 23.20 16.50 7.50 36.75
LTTng 10.30 9.40 12.30 18.10 12.90 10.30 10.90 11.60 11.98

Django (Python)
Auditd 2.50 0.70 2.10 2.30 1.20 0.50 1.50 2.10 1.62
Sysdig 1.00 1.00 0.40 1.10 1.10 1.40 0.10 0.30 0.80
LTTng 1.70 2.10 1.70 1.00 1.20 0.30 0.80 1.10 1.24

http (Golang)
Auditd 341.00 97.30 31.20 11.30 516.00 91.60 35.30 15.50 142.40
Sysdig 60.70 13.90 10.60 2.80 76.70 11.90 4.10 2.20 22.86
LTTng 13.80 6.50 4.20 4.10 13.40 6.20 5.80 4.20 7.28

OpenSSL
Auditd 2.90 1.80 1.20 1.00 6.90 0.10 1.70 0.20 1.98
Sysdig 0.50 0.80 0.40 0.10 0.50 1.40 0.30 0.10 0.51
LTTng 2.50 0.50 0.10 0.10 0.20 0.20 1.70 0.60 0.74

7-ZIP
Auditd 17.40 10.90 5.40 3.70 16.90 5.60 2.40 2.00 8.04
Sysdig 1.50 1.30 1.10 1.10 1.20 1.00 0.80 0.70 1.08
LTTng 2.40 1.80 0.90 0.80 4.70 2.30 0.10 0.10 1.64

Table 11:Memory consumption of provenance data collectors

Agent C1/C5 C2/C6 C3/C7 C4/C8
Auditd 65.9M 65.9M 65.9M 65.9M
Sysdig 38M 62M 158M 286M
LTTng 17.9M 23.9M 47.9M 79.9M

Table 12: Overview of the evaluation datasets

Dataset Host
Num Days Data

Size
Event
Num

Event
Rate

Event
Size

DARPA-Cadets 1 11 14 GB 15 M 16.87 eps 1013 Byte
DARPA-Theia 1 11 7.5 GB 10 M 11.25 eps 810 Byte
DARPA-Trace 1 11 62 GB 72 M 75.76 eps 925 Byte
Simulation 5 12 23 GB 50 M 48.23 eps 483 Byte
Production 300+ 5 16.85 GB 17 M 39.35 eps 1064 Byte

Table 13: Average number of graph nodes for the evaluation
datasets and memory consumption of three P-EDR systems

Dataset # of Graph Nodes Memory (MB/host)
HOLMES ProvDetector UNICORN

DARPA-Cadets 280W+ 5683 10240 274
DARPA-Theia 125W+ 3870 6574 242
DARPA-Trace 325W+ 9605 - 242
Simulation 3W+ 73 195 213
Production 5W+ 84 240 219

the reference value (< 50 nodes). HOLMES generates alarms within
ten times larger than the reference value. Even worse, UNICORN re-
ports the whole graph as an alarm and cannot pinpoint the concise
location of attacks. Thus, it generates too coarse-grained prove-
nance graphs 3 to 4 orders of magnitude larger than the reference
value, which is not practical in industry.
Alarm Triage. As shown in Table 15, only UNICORN can roughly

Table 14: Interpretation cost (# of graph nodes)

Dataset HOLMES ProvDetector UNICORN
DARPA-Cadets 173 15 154730
DARPA-Theia 73 8 522735
DARPA-Trace 450 - 1454033
Simulation 566 7 11587
Production 81 5 17853

Table 15: Average Alarm Number (alarms/host/day)

Dataset HOLMES ProvDetector UNICORN
DARPA-Cadets 21 90 0.3
DARPA-Theia 36.7 90 0.1
DARPA-Trace 13.9 - 0.45
Simulation 2.3 23 0.09
Production 12.1 56.3 0.13

satisfy the reference value (<0.1 alarms/host/day). HOLMES and
ProvDetector still need to reduce the number of alarms by more
than 2 orders of magnitude to meet the reference value. Specifically,
since improving precision can reduce the number of alarms per
host per day (See Section 3.3), HOLMES and ProvDetector will need
to improve their precision significantly.

7 FINDINGS OF OUR STUDY
In this section, we summarize the key findings of our study and
answer the three research questions. In particular, we address RQ1
and RQ2 based on the results of the interviews, and address RQ3
based on the results of all the four studies.
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7.1 RQ 1: Effectiveness of P-EDR
In our interviews, we found that the managers in the industry all
agreed that P-EDR was more effective than conventional EDR sys-
tems due to better interpretability. They all showed great interest in
P-EDR systems and agreed that P-EDR systems had great potential
to replace conventional EDR systems.
Replacing EDR Systems. As shown in Table 2, 4 out of the 10
managers have adopted P-EDR systems to replace the conventional
EDR systems in their products or environments. For instance, 𝐸1
said: “We use provenance analysis techniques for attack investiga-
tion. The P-EDR takes the alarm event as the starting point and
generates a limited provenance graph through causal analysis for
manual confirmation. The contextual information contained in
the provenance graph greatly improves the efficiency of attack in-
vestigation.” 𝐸7, the developer of a P-EDR system, also said: “Our
customers are interested in the improvement of attack detection
and investigation brought by provenance analysis techniques, so
we decide to focus on P-EDR systems.”

Even the managers who were not using P-EDR systems showed
great interest in P-EDR systems. They had not adopted P-EDR sys-
tems yet due to the higher cost. For example, 𝐸8 said: “We attempted
to detect attacks using provenance graphs on a customer with 1,200
hosts. However, 800MB of memory is required to detect the attack
for the provenance graph data of only one host, and the experimen-
tal server runs out of memory after running only 40 host data. We
cannot afford the memory cost. Nevertheless, we still hope to find
a feasible method.”
Interpretability. The managers agreed that it was straightforward
to interpret the results of P-EDR systems. Surprisingly, even the ba-
sic provenance graphs that consist of low-level system audit events
are easy to interpret for security analysts as long as they are con-
cise. For example, 𝐸2 says: “An analyst’s ability to translate alarm
semantics is related to his experience, and most matured analysts
seldom encounter this problem. Even inexperienced newbies can
understand the provenance graphs by taking a quick training.”. On
average, a novice analyst can understand most provenance graphs
by taking a 7-14 days training session, as mentioned by 𝐸1 and
𝐸6. Lastly, the managers all agreed that existing techniques that
abstract the basic provenance graphs to more intuitive levels, such
as technique and tactic levels [15, 52], can potentially improve the
interpretability of provenance graphs.

Answer to RQ 1

The industry acknowledges that P-EDR systems are superior to
conventional EDR systems due to better interpretability. Experi-
enced security analysts can easily understand basic provenance
graphs that consist of low-level system audit events, and com-
panies have designed training sessions in provenance analysis
for training novice analysts.

7.2 RQ 2: Adoption Bottlenecks
According to the results, the primary bottleneck for the industry to
adopt P-EDR systems is the cost instead of the performance. In fact,
only two managers (𝐸2 and 𝐸3) considered detection accuracy as a
decision factor, and they still considered it as an optional factor and

ranked it after other factors. The major reason is that these man-
agers already have mature processes in working with existing EDR
systems that generate lots of false positives, and P-EDR systems
generally have better detection accuracy than EDR systems.

Through discussions with these managers, we realized that the
decision process of an industrial manager to adopt a P-EDR system,
or an EDR in general, was to minimize the potential loss of success-
ful attacks and the cost of running an EDR system. Formally, the
managers aim to minimize the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑐𝑜𝑠𝑡 , where 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑐𝑜𝑠𝑡 =
𝑙𝑜𝑠𝑠𝑒 +𝑜𝑝_𝑐𝑜𝑠𝑡 , 𝑙𝑜𝑠𝑠𝑒 is the expected loss, and 𝑜𝑝_𝑐𝑜𝑠𝑡 is the operat-
ing cost that consists of computing cost and labor cost (Section 3.3).
Here, 𝑙𝑜𝑠𝑠𝑒 is considered as a constant because it is not observable
in practice. Thus, when a manager was evaluating an EDR system,
he first tested whether the EDR system could detect attacks in a
testing environment with sufficient accuracy. As long as the detec-
tion recall exceeds a certain threshold, the manager replaces 𝑙𝑜𝑠𝑠𝑒
with a constant. Furthermore, almost all existing P-EDR systems
can achieve higher recalls than their thresholds, as mentioned by
the managers. Therefore, the managers only considered the oper-
ating cost as the primary bottleneck of a P-EDR system. This also
explains why none of them chose recall as one of decision factors.

Answer to RQ2

The operating cost, which consists of the four-must factors:
Memory, Client-Side Overhead, Interpretation, and Alarm
Triage, is the primary bottleneck for the industry to adopt an
EDR/P-EDR system.

7.3 RQ3: Gaps Between Industry and Academia
According to the results of all the four studies, we find that there
are three important gaps between the P-EDR techniques proposed
by academia and the expectations of the industry.
Gap 1: Overlooking Client-Side Overhead. Although the indus-
try considers the Client-Side Overhead as one of the most impor-
tant factors for adopting P-EDR systems, academia often overlooks
it. Based on our interviews, 8 out of 10 managers identified the
client-side overhead as the most important decision factor. How-
ever, all the 20 surveyed papers, except for RTAG, did not evaluate
the client-side overhead of their approaches. Worse still, by inves-
tigating existing provenance collectors in academia and industry,
we found that there were no comprehensive evaluations on the
client-side overhead of these collectors, even though the most pop-
ular commercial provenance collectors (Auditd, Sysdig, LTTng, and
ETW) shown in Table 8. Through our literature review (Section 5)
and measurement study (Section 6.2), we found that existing prove-
nance collectors could not satisfy the reference value of runtime
overhead (<3%).
Gap 2: Imbalance between Alarm Triage and Interpretation.
Alarm triage, and Interpretation are two must-meet factors for the
P-EDR systems. Our study shows that none of the existing P-EDR
systems meet both of these factors. With deeper investigation, we
realize that these P-EDR systems implicitly sacrifice one factor
to enhance the other. Consider the three representative systems
in Table 15, UNICORN has a satisfying alarm triage cost. How-
ever, this comes with the interpretation cost of several orders of
magnitudes higher than the other two systems. This is because
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UNICORN projects provenance graphs into embedding vectors,
which improves detection accuracy, but the projection also prevents
UNICORN from pruning irrelevant events from the provenance
graphs, leading to huge graphs (millions of nodes). On the contrary,
HOLMES and ProveDetector detect anomaly paths in provenance
graphs, generating much smaller graphs (low investigation costs)
but resulting in much higher false positives (dozens on average).
Gap 3: Excessive Server-Side Memory Consumption. Mem-
ory is a must-meet factor for adopting P-EDR systems. But our
literature survey shows that academia has not paid attention to
server-side memory consumption, and our measurement study
shows that existing P-EDR systems cannot satisfy the reference
value (<20MB/host). The root cause for such intolerable memory
consumption is that these systems cache all the provenance data
in the memory, such as HOLMES and ProveDetector. Therefore,
these systems cannot scale to monitor large clusters of hosts. For
example, ProveDetector failed to conduct detection on the DARPA-
Trace dataset due to memory explosion. Unlike these two systems,
UNICORN adopts a stream-based processing approach that uses
a sliding window to cache only the most recent provenance data.
Even so, its memory consumption is still 200MB/host, which is
about 10× of the reference value (20MB/host).

Answer to RQ 3 (derived from all four-part studies)

There exist three important gaps (overlooking client-side over-
head, the imbalance between alarm triage cost and interpre-
tation cost, and excessive server-side memory consumption)
between the academic research and the industry expectations.

8 DISCUSSION
8.1 Study Limitations
The limited number of participants in our one-to-one interview
may harm the generalizability of our study. To address this threat,
we recruited participants from different top IT companies, includ-
ing both customers and providers of P-EDR systems. Further, we
followed up the interviews with an online questionnaire that ex-
panded the scope of the participants. We also strictly followed the
principles in Qualitative Interview Design [50, 68] and How to Design
and Frame a Questionnaire [25] when conducting the interviews and
the follow-up questionnaires. Further, inaccurate implementation
and inappropriate parameter configurations of the chosen P-EDR
system may also harm the validity of our study. To mitigate this
threat, we used the original implementations if they were available
or strictly followed the paper descriptions to implement and con-
figure the systems (e.g., ProvDetector and HOLMEs). We also share
the systems [3] and the evaluation datasets with the community
for subsequent reproducible research.

8.2 Implications
Our study findings (Section 7) identify potential areas to improve
P-EDR techniques. We summarize the study implications with the
focus on filling the important gaps as follows.
Adopting Data Reduction for Gap 1: To date, client-side over-
head has received less attention than others and more efforts are

desired to optimize the runtime overhead of collectors. Recent stud-
ies on provenance data reduction [34, 67, 75] show that there are
a large number of repeated and similar logs in the collected logs,
which waste a lot of memory on the client side. Thus, a promis-
ing approach is to integrate causality-preserving reduction [75]
and other data reduction techniques to provenance collectors to
greatly reduce the volume of log data. However, existing data reduc-
tion techniques are mainly designed to run on the server side, and
complex compression algorithms are too expensive to be directly ap-
plied to the client’s collector. For example, NodeMerge [67] requires
928.61MB of memory, and efficient collectors pursue smaller over-
head rather than data compression ratio. Therefore, we can develop
a lightweight collection and filtering framework to reduce the col-
lection of irrelevant log data through lightweight computation such
as heuristic rules on identifying temp files [44] or deprioritizing
chronicle maintenance processes.
Integrating Alarm Filtering for Gap 2: Due to the lack of indus-
try insights, existing work mainly focuses on how to reduce the
number of alarms and ignores the size of the alarm graph. In addi-
tion, many of the key papers [29, 30, 54] related to alarm filtering
mostly adopt a single filtering method such as alarm correlation
or alarm ranking, and the filtering effect on large-scale clusters is
insufficient. For example, NoDoze [30] is an alarm ranking tech-
nique that assigns an anomaly score based on the frequency to
combat threat alarm fatigue produced by the rule-based host IDPS.
The filtering effectiveness of NoDoze is only around 84%. If it is
applied to the production data set of the HOLMES in Section 6.2,
there are still 1.94 alarms/host/day, which is far from the industry
reference value (< 0.1 alarms/host/day). To reduce the amount of
alarms, we can adopt a systematic alarm filtering method, which
can integrate alarm aggregation, correlation, and ranking meth-
ods, reaching the desirable alarm level. At the same time, for those
systems that generate a large-scale alarm graph, we can design an
alarm graph clipping algorithm to identify and delete irrelevant
nodes and edges in the alarm graph, so as to control the graph size
to a reasonable range.
Distributing Server Workload and Archiving Events for Gap
3: The key papers discussed in our study all adopt a centralized ar-
chitecture, which uploads the full amount of logs to the server, and
then builds a complete provenance graph for complex graph clip-
ping and matching calculations to detect attacks. However, building
and maintaining provenance graphs require a lot of memory, and
yet a large portion of nodes and edges in the provenance graph
is irrelevant to actual attacks [29], wasting a lot of memory. Thus,
a promising solution is to adopt a distributed architecture to uti-
lize client computing if clients have spared computing capacity to
reduce server memory burdens. For example, we can design a light-
weight filtering algorithm on the client side to identify suspicious
events, and only upload information related to suspected attack
events to the server. Unlike the centralized architecture, which
needs to reconstruct and maintain provenance graphs and perform
complex computations on these graphs, a distributed architecture
only processes localized data of suspicious events, and the required
memory is greatly reduced. Furthermore, we can design an algo-
rithm to periodically evict the events cached in the memory to the
hard disk during attack detection and fetch the associated data from
the disk when it is needed during attack investigation.
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9 RELATEDWORK
Researchers have shown great interest in understanding the chal-
lenges and opportunities of P-EDR systems. Han et.al. [28] sum-
marized the opportunities and challenges associated with P-EDR
and provide insights based on their research experience in this
area. Li et.al. [45] conducted a literature review on existing P-EDRs
in academia. The most recent measurement study conducted by
Inam et.al. [35] summarizes P-EDR related techniques published in
the top-tier system and security conferences and builds taxonomy
based on the system auditing pipeline. Alahmadi et.al. [13] carried
out a qualitative study of conventional SOC analysts’ perspectives
on security alarms through an online survey and semi-structured
interviews. Yet, none of the existing papers have studied the effec-
tiveness and bottlenecks of P-EDR systems from the perspective of
the industry. Note that, the most well-known P-EDR systems are
introduced in Section 5.

10 CONCLUSION
In this paper, we conduct the first set of systematic studies on the
effectiveness and the bottlenecks of existing P-EDR systems from
the industrial perspective. We also conduct a literature survey and
a measurement study to identify the gaps between the techniques
developed in academia and the expectations of the industry. Our
study shows that the industry believes that P-EDR systems are
superior to convention EDR systems. However, the industry is
also concerned about the operating cost of P-EDR systems. We
further identify three gaps between academia and the industry.
Particularly, we find the academia (1) overlooks the client-side
overhead of P-EDR systems, (2) fails to balance alarm triage and
interpretation, and (3) needs to significantly reduce the server-
side memory consumption for P-EDR systems. Taken together, we
expect these findings to help improve researchers’ understanding
of the expectations of P-EDR systems from the industry.
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