1464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Towards Automatically Localizing Function Errors
iIn Mobile Apps With User Reviews

Le Yu™, Haoyu Wang, Xiapu Luo™, Tao Zhang™, Senior Member, IEEE, Kang Liu, Jiachi Chen,

Hao Zhou, Yutian Tang™, Member, IEEE, and Xusheng Xiao™, Member, IEEE

Abstract—Removing all function errors is critical for making successful mobile apps. Since app testing may miss some function errors
given limited time and resource, the user reviews of mobile apps are very important to developers for learning the uncaught errors.
Unfortunately, manually handling each review is time-consuming and even error-prone. Existing studies on mobile apps’ reviews could
not help developers effectively locate the problematic code according to the reviews, because the majority of such research focus on
review classification, requirements engineering, sentiment analysis, and summarization [1]. They do not localize the function errors
described in user reviews in apps’ code. Moreover, recent studies on mapping reviews to problematic source files look for the matching
between the words in reviews and that in source code, bug reports, commit messages, and stack traces, thus may result in false
positives and false negatives since they do not consider the semantic meaning and part of speech tag of each word. In this paper, we
propose a novel approach to localize function errors in mobile apps by exploiting the context information in user reviews and correlating
the reviews and bytecode through their semantic meanings. We realize our new approach as a tool named ReviewSolver, and
carefully evaluate it with reviews of real apps. The experimental result shows that ReviewSolver has much better performance than
the state-of-the-art tools (i.e., ChangeAdvisor and Where2Change).

Index Terms—~Function error localization, user reviews, mobile apps

<+

1 INTRODUCTION

ITH the rapid growth of mobile apps, removing func-
tion errors is critical for making successful mobile
apps. Since app testing may not reveal all function errors
given limited time and resource, the user reviews of mobile
apps [2] are very important to developers for learning their
apps’ bugs [3], requested features [4], limitations [5], and

o Le Yu, Xiapu Luo, and Hao Zhou are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. E-mail: {yulele08,
sunmoonsky0001 }@gmail.com, csxluo@comp.polyu.edu.hk.

o Haoyu Wang is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China.

E-mail: haoyuwang@bupt.edu.cn.

o Tao Zhang is with the School of Computer Science and Engineering,
Macau University of Science and Technology, Macao 999078, China.
E-mail: tazhang@must.edu.mo.

o Kang Liu is with the Institute of Automation, Chinese Academy of Scien-
ces, Beijing 100045, China. E-mail: kliu@nlpr.ia.ac.cn.

o Jiachi Chen is with the School of Software Engineering, Sun Yat-Sen Uni-
versity, Guangzhou 510275, China. E-mail: chenjiachihk@163.com.

o Yutian Tang is with the School of Information Science and Technology,
ShanghaiTech University, Shanghai 201210, China.

E-mail: csytang@comp.polyu.edu.hk.

o Xusheng Xiao is with the Department of Computer and Data Sciences,
Case Western Reserve University, Cleveland, OH 44106 USA.

E-mail: xusheng xiao@case.edu.

Manuscript received 2 July 2021; revised 5 March 2022; accepted 13 May
2022. Date of publication 26 May 2022; date of current version 18 April 2023.
This work was supported in part by the Hong Kong RGC Projects under Grants
PolyU15223918 and PolyU15224121, in part by HKPolyU Start-up Fund
(BD7H), by the National Natural Science Foundation of China under Grants
61972359 and 61831022, in part by the Zhejiang Provincial Natural Science
Foundation of China under Grant LY19F020052, and in part by National Science
Foundation https:/[doi.org/10.13039/100000001 under the Grant CCF-2046953.
(Corresponding author: Xiapu Luo.)

Recommended for acceptance by M. Nagappan.

Digital Object Identifier no. 10.1109/TSE.2022.3178096

strengths [6]. Unfortunately, manually handling each review
is time-consuming and error-prone because apps may
receive thousands of reviews, part of which may be useless
and even incorrect. Moreover, if the person who processes
the reviews is not familiar with the apps’ code, it is difficult
for him/her to determine whether a review is useful.

It is challenging to automatically map user reviews, espe-
cially function errors, to code, because reviews are written
in natural languages by normal users and they are usually
short and unstructured whereas the apps are developed in
programming languages and compiled into bytecode or
binary code, which are designed for the runtime instead of
normal users. It is worth noting that the majority of existing
studies on mobile apps’ reviews just summarize and clas-
sify user reviews [7], [8], [9], [10], [11], [12] without taking
into account apps’ code, and thus they cannot help develop-
ers locate the problematic code according to the reviews. To
localize the function errors described in user reviews, a few
studies extract words from user reviews and compare them
with that in source code [13], bug reports [14], commit mes-
sages [15], stack traces [16]. However, none of them extracts
the semantic information of function errors from bytecode
and reviews, which may result in false positives and false
negatives. For instance, one user review describes that the
error has appeared “for the longest time”. Although this
error is not caused by the “time,” these systems will still
extract the word “time” and then localize the error in the
Clock related class. In this case, one false positive is gener-
ated (See real examples in Section 2.3). Palomba et al.
recently propose ChangeAdvisor [13] for mapping
reviews to source code by first clustering similar reviews
and then comparing the topic words identified from the
clusters with the words extracted from the names of code

0098-5589 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0003-1457-6329
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0000-0001-5677-4564
https://orcid.org/0000-0003-4797-4294
https://orcid.org/0000-0003-4797-4294
https://orcid.org/0000-0003-4797-4294
https://orcid.org/0000-0003-4797-4294
https://orcid.org/0000-0003-4797-4294
mailto:yulele08@gmail.com
mailto:sunmoonsky0001@gmail.com
mailto:csxluo@comp.polyu.edu.hk
mailto:haoyuwang@bupt.edu.cn
mailto:tazhang@must.edu.mo
mailto:kliu@nlpr.ia.ac.cn
mailto:chenjiachihk@163.com
mailto:csytang@comp.polyu.edu.hk
mailto:xusheng.xiao@case.edu
https://doi.org/10.13039/100000001

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

components (e.g., methods, classes). Unfortunately, because
ChangeAdvisor does not exploit the semantic information
in reviews/bytecode and the names of code components
contain limited information, its performance of localizing
the function errors will be affected. Another system
Where2Change [14] employs the bug reports to improve
the performance of ChangeAdvisor. For each review clus-
ter, Where2Change compares its topic words with the topic
words of bug reports to determine if they are relevant or
not. If true, Where2Change combines the topic words
extracted from both the review cluster and the bug report to
find the relevant source code. Different from Where2-
Change, the system RISING employs the commit messages
and source code to find more mappings [15]. Apart from
source code files, if the similarity between the review cluster
and the commit message is high, RISING builds up map-
ping between the review cluster and the changed files of the
commit message. Both Where2Change and RISING do not
extract the semantic information of function errors from
reviews and bytecode. In this paper, to address this chal-
lenging problem, we propose a novel approach and develop
a new tool named ReviewSolver to localize function
errors in mobile apps by correlating their reviews and byte-
code through their semantic meanings with the hints of con-
text information in user reviews. We aim at Android apps
because Android has occupied 75% market share of mobile
operating systems [17] and there are already 2.9 million
apps in Google Play [18]. In particular, ReviewSolver
exploits three new observations. First, as shown in Sec-
tion 2.2, the user reviews related to function errors usually
contain context information (e.g., API, GU]I, etc.), which pro-
vides hints for inferring the source of errors. For example,
one review of the app com. fsck.k9 is “Reinstalled k9, reply
button now doesn’t show, can’t find any solutions.” This error is
related to a button. To locate the corresponding code, we
first analyze the structure of GUI and the components
therein. After extracting the noun phrase “reply button”
from the review, we search the word “reply” that modifies
the “button” in the information related to each GUI compo-
nent. Finally, we recommend the developer to check the
activity com.fsck.k9.activity.Editldentity since it contains a
widget named “reply_to”.

Second, due to the diverse expression and word ambigu-
ity of user reviews, we need to conduct sentence-level analy-
sis for squeezing useful information out of user reviews
rather than relying on a few topic words from review clus-
ters. The latter may miss much useful information. For exam-
ple, areview of com. fsck.k9 is “The latest upgrade just broke
K9. Random certificate errors”. The user mentioned that this
error was related to an certificate. When extracting topic
words, ChangeAdvisor missed the word “certificate,” and
thus it cannot locate this error. After extracting the noun
phrase “certificate error,” we can locate APIs that contain
“certificate” in their descriptions. Finally, we find the class
com.fsck.k9.view.ClientCertificateSpinner since it calls the certif-
icate related API KeyChain.choosePrivateKeyAlias()).

Third, the rich information distributed in various soft-
ware artifacts related to apps should be leveraged to
enhance the limited information in the names of code com-
ponents. Moreover, instead of looking for exact words in
user reviews and code, we should correlate them through

1465

their semantic meanings to avoid missing the mapping. For
example, in the review “When the picture is saved, it gets
flipped upside my down” of the app fr.xplod.focal, the
“save picture” verb phrase can be mapped to the camera
related APIs (e.g., MediaRecorder.setVideoSource()) since
“picture” and “video” are similar nouns. Note that directly
searching the phrase “save picture” in code files cannot find
any related class.

New Solutions. Therefore, to help developers automati-
cally map function error reviews to code, ReviewSolver
first identifies such kind of function error reviews through
supervised machine learning algorithm and analyzes each
sentence in such reviews to extract useful verb phrase and
noun phrase through natural language processing (INLP)
techniques (described in Section 3.2). Then, it conducts static
bytecode analysis on apps to extract seven kinds of informa-
tion (described in Section 3.3). Finally, ReviewSolver
maps the reviews to the code according to their semantic
similarity and recommends the most related code to devel-
opers (described in Section 4). We carefully evaluate the
performance of ReviewSolver and compare it with
ChangeAdvisor [13] and Where2Change [14], the state-of-
the-art tool using real reviews of 18 open-source apps. It is
worth noting that ReviewSolver handles apps’ bytecode
directly and we select open-source apps for the ease of evalu-
ation and comparison, because ChangeAdvisor and
Where2Change need apps’ source code. The experimental
results show that ReviewSolver can identify function error
related reviews with at least 85.4% precision and 66.4% recall
rate. For the same reviews that can be correlated to code files
(by checking bug reports), ReviewSolver correctly locates
359 code files whereas ChangeAdvisor only correctly
locates 102 code files and Where2Change only correctly
locates 211 code files. For the same reviews that can be
correlated to code files (by checking release notes),
ReviewSolver correctly locates 84 code files whereas
ChangeAdvisor only correctly locates 15 code files and
Where2Change only correctly locates 25 code files. More-
over, ReviewSolver can map 57.9% of function error
related reviews to code whereas ChangeAdvisor can only
map 9.3% of such reviews and Where2Changecan only map
38.0% of such reviews.

New Materials Compared With the Earlier Version. Com-
pared with our earlier version [19], this manuscript includes
a significant amount of new materials. First, we enhance the
capability of ReviewSolver. For the review analysis in
Section 3.2, we propose to split each function error review
into sentences and then perform sentiment analysis to iden-
tify the positive sentences. For the static analysis in Sec-
tion 3.3, after downloading all versions of APK files, we
enable ReviewSolver to generate summarization for each
method in the APK file. It will also identify the abbrevia-
tions in the GUI and then replace them with the raw words.
For the localizing function errors (in Section 4), we add four
new methods to localize the function errors: 1) For the func-
tion error related to app specific task, we also leverage the
generated summarization of each method to localize it (Sec-
tion 4.1.1). 2) If the user implicitly describes the type of the
issue, we search the type in GUI to localize it (Section 4.1.2).
3) For the function error related to the general task, we pro-
pose to localize it through using the Q&A of third party

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1466

websites (Section 4.2.2). 4) For the function error review
describing the type of exception, we localize it through
checking the framework APIs and the methods defined by
developers (Section 4.2.3). Second, we perform much more
evaluations on ReviewSolver with a larger data set hav-
ing 27,000 user reviews and a new ground truth created by
using the release notes (Section 5.1). Besides re-conducting
the experiments in earlier version [19], we add the following
new evaluations, including 1) the performance of using
machine learning algorithm to process the review dataset
provided by Maalej et al. [20], [21], 2) comparing the perfor-
mance of ReviewSolver with another state-of-the-art sys-
tem Where2Change (Section 5.3), 3) measuring the
percentage of function error reviews resolved by using the
context information “General Task,” “Exception,” and the
summarization of method (Section 5.4).

Main Contributions. In summary, our major contributions
include:

e By manually reading the function error reviews of
mobile apps, we summarized the types of context
information commonly used to describe the function
errors. Based on this observation, we propose a novel
approach to localize function errors in mobile apps
by exploiting the context information in user reviews
and correlating the reviews and bytecode through
their semantic meanings.

e We realize the new approach in the tool Review-
Solver that leverages NLP and program analysis
techniques to automatically extract selected informa-
tion from an app’s APK file and its reviews, and then
map the function error reviews to code.

e We evaluate ReviewSolver using real apps
and their reviews, and compare it with ChangeAd-
visor and Where2Change. The results show that
ReviewSolver outperforms ChangeAdvisor and
Where2Change in terms of correctly mapping more
reviews to code.

The rest of this paper is organized as follows. Section 2
introduces the background and motivating examples. Sec-
tions 3 and 4 detail the design of ReviewSolver. We pres-
ent the experimental result in Section 5 and discuss the
limitation of ReviewSolver in Section 6, respectively.
After introducing the related work in Section 7, we conclude
the paper in Section 8.

2 BACKGROUND AND MOTIVATING EXAMPLES

2.1 Function Error Related Reviews

By manually analyzing 6,390 user reviews, Khalid ef al. [22]
summarized 12 types of user complaints in user reviews,
and the top 3 most common complaints include function
error (26.68%), feature request (15.13%), and app crashing
(10.51%). Function error related reviews describe app spe-
cific problem found when using it. An example is “Couldn’t
connect to server”. App crashing related reviews depict the
event of app crashing. For instance, “Crashes every time I use
it”. Since both function errors and app crashing are critical
problems, we consider them together under the same cate-
gory (i.e., function errors) by mapping the user reviews to
the corresponding code.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 1
The Context Information in Function Error Reviews
[Context | Description | Percentage | Example |

(1) App Specific | Errors appear | 30.4% “Keeps crashing

Task when performing | (76/250) every time I open
app specific tasks imgur links...”

(2) Updating App Errors appear af- | 8.8% “App started
ter updating the | (22/250) crashing after
app recent update.”

(3) GUI Errors appear | 6.0% “Note 4 does not
when interacting | (15/250) have menu hard
with GUI button.”

(4) Error Message Reviews contains | 10.8% “itjust says “c:geo
the error | (27/250) can’t load data
messages from required to log
apps visit””

(5) Opening App | Errors appear | 3.2% “It crashed every

Activity when opening the | (8/250) time I opened it.”
app

(6) Registering Ac- Errors appear 1.6% “Cannot login to

count Interface when login- | (4/250) my gmail”
ing/registering
account

(7) API/URI/intent Errors appear 9.6% “But I cannot save
when accessing | (24/250) photos to sd card
resource or with it”
information

(8) General Task General tasks | 5.6% “Too many errors
implemented by | (14/250) that prevent file
many developers downloads from

completing.”

(9) Exception An exception ap- | 0.8% “You got a null
peared when us- | (2/250) pointer exception
ing the app on the login

screen”

(10) Other User does not de- | 23.2% “Sometimes not
scribe the context (58/250) working.”

2.2 Context Information in Reviews
A key insight behind ReviewSolver is that users may
describe the context under which an error occurred when
writing reviews [21]. Such context information provides us
useful hints to locate the problematic codes. To further illus-
trate it, we randomly select 250 function error reviews with
at least 4 words from 18 open-source apps (Section 5.4,
Table 11), manually read them, and summarize the context
of the function errors. As shown in Table 1, 76.8% function
error reviews contain more or less context information. We
use examples to illustrate how to locate the problematic
code by exploiting such context information in Section 2.3.
As shown in Table 1, most errors (30.4%) related to the
functions specific to an app (“(1) App Specific Task” in
Table 1). Since different apps have different specific func-
tions, it is difficult to predefine some classes and group
these functions into them. Hence, we look for the classes/
methods that realize these functions. Since 8.8% errors
appear after the app is updated, we will determine the code
difference between the version reported by users and the
previous version. Sometimes the users may describe the
error message shown in app (10.8%), and hence we locate
such error by checking the classes that display such error
message. For function error reviews that report crashing
right after the app is launched(3.2%), we will locate and
check the starting activity. If the errors happen when regis-
tering account or during login (1.6%), we look for and exam-
ine the account registration and login related activities. 9.6%
errors are related to the resource/information of the device.
Since such resource/information could be accessed by using
APIs, URISs, or intents, we will locate the problematic code
through the corresponding APIs, URIs, or intents. We also
find 5.6% reviews describing the general tasks related to the

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

bugs. Since these tasks have been implemented by many
developers, we search the implementation of other develop-
ers by using Q&As of third party websites (e.g., Stack Over-
flow [23], CSDN [24]) and leverage them to find similar
implementation in app code. Moreover, 0.8% reviews
describe the exception message. We will search the classes
throwing the corresponding exception.

We divide these types of context information in Table 1
into two categories and detail how to map them to code in
Sections 4.1 and 4.2 individually. One category includes
app specific errors that are related to the functions imple-
mented by developers (i.e., Table 1 case (1)-(6)). The other
one includes the general errors commonly appeared in dif-
ferent apps (i.e., Table 1 case (7)-(9)).

Table 1 also shows that 23.2% function error reviews do
not contain context information. They usually describe that
the app does not work due to some bugs (e.g., “Crash after
crash. Uninstall very fast!”) or simply point out the device
type (e.g., “Please fix the bug. i'm using xiaomi midc”). We dis-
cuss possible solutions to handle them in Section 6 and will
investigate them in future work.

2.3 Motivating Examples

To clearly differentiate our approach (i.e., ReviewSolver)
from the state-of-the-art method (i.e., ChangeAdvi-
sor [25]), we use the motivating examples to demonstrate
why ChangeAdvisor will lead to false positives and false
negatives and how our approach can address the problems.
Note that ChangeAdvisor [13] first clusters similar
reviews and then looks up the topic words identified from
the clusters in a set of words extracted from the names of
source code elements (e.g., fields, methods, and classes) to
determine problematic source file.

Without considering the syntactic and semantic informa-
tion in the sentence, ChangeAdvisor may include irrele-
vant words and cause false positive (i.e., the mapping from
the review to the code is incorrect). Example 1 illustrates this.

Example 1 com. fsck.k9: “Unable to fetch mail on Sam-
sung Note 4 for Nexus 7 for the longest time”.

ChangeAdvisor This review describes an error related
to “fetch mail”. ChangeAdvisor extracts the word “time”
as topic words of the cluster and recommends the developer
to check the class com.fsck.k9.Clock since the code file of class
also contains the word “time”. Unfortunately, this class is
not related to this error.

ReviewSolver We first extract the verb phrase “fetch
mail” from the syntactic tree of this review, and then com-
pare the semantic similarity between this verb phrase and
the verb phrases extracted from method names. If the simi-
larity is higher than the threshold, ReviewSolver recom-
mend the developer to check the corresponding method
(i.e.,, “com.fsck.k9.Account.getEmail()” in this example).

Moreover, since ChangeAdvisor does not conduct
static analysis on apps, it may lead to many false negatives
(i.e.,, cannot map the errors to the code). By contrast,
ReviewSolver can reveal them by leveraging the context
information in user reviews and the information distributed
in various software artifacts related to apps, as illustrated in
the Examples 2-5.

Example2 org . thoughtcrime. securesms: “Unfortunately
I can no longer send SMS to any non-signal user.”

1467

ReviewSolver Since some errors in reviews are related
to Android framework APIs, we look for the classes that
invoke the corresponding APIs. In particular, we extract the
verb phrase “send SMS” from the review, and look for the
APIs whose descriptions express the same meaning. Since
the API SmsManager.sendTextMessage() fulfills the require-
ment, we recommend developer to check the class org.
thoughtcrime.securesms.jobs.SmsSend]ob since it calls this APL

Example 3 org.thoughtcrime.securesms: “Signal
crashed when i tried to find contact while writing sms..."”

ReviewSolver Since some errors in reviews are related
to the content providers, we locate the invocation of such
content providers in apps. More precisely, after extracting
the verb phrase “find contact” from the review, we conduct
static analysis on code to find the classes that query content
provider to get contact information. Eventually, we recom-
mend developer to examine the method ContactsDatabase.
queryTextSecureContacts() since it queries the content pro-
vider with URI < android.provider.ContactsCon-
tract$Data: android.net.Uri CONTENT_URI > to get
contact.

Example 4 org.mariotaku.twidere: “Update: upload-
ing photos error.”

ReviewSolver Since some errors in reviews involve
sending/receiving intents, we find the classes that contain
such intents. For example, after extracting camera related
verb phrase “upload photo” from the review, we conduct
static analysis to find the classes that send camera related
intents. We recommend developer to investigate the
method MediaPickerActivity.openCamera() because it will
send an intent with action android.media.action.
VIDEO_CAPTURE to other apps.

Example 5 com. fsck.k9: “I like the app, but I receive an
error message saying “Failed to send some messages” EVERY
time I send an email.”

ReviewSolver If the error reviews list the error mes-
sages from the apps, we can look for such messages in the
app. For example, after determining the error message in
the review, we locate the class that shows this message, and
eventually recommend the developer to examine the class
com.fsck.k9.notification.SendFailedNotifications since it raises
this message.

Because ChangeAdvisor does not have the knowledge
of implementing the general tasks with framework APIs, it
cannot locate the function errors related to these general
tasks. To overcome this limitation, ReviewSolver first
uses the Q&As of third party websites to learn the knowl-
edge of implementing these general tasks with the Android
framework APIs. Then, it uses these Android framework
APIs to help locate the corresponding bugs in the app code.
We use Example 6 to illustrate this procedure.

Example 6 org.wordpress.android: “Won't connect.
Get a 404 error when adding wordpress site”.

ReviewSolver By searching “404 error” in Stack Over-
flow [23], we find that this error usually happens when con-
necting server with the framework APIs (e.g.,, WebView.
loadUrl()) [26], [27]. Then, we can locate the bug by finding
the classes that call these APIs (e.g., org.wordpress.android.ui.
reader .ReaderPostPagerActivity, com.wordpress.rest.RestClient).

Some users describe the type of exception thrown by the
app in the review. After identifying the framework APIs

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1468

e, Q&A of Third Party
o i y
Yorred

LA

Classes
Related to
Function

Errors

Error Messages L

Function —»

Class Names, Method Errors

* Permissions
[Apkiool]—b{ AndroidManifest.xml Activities
APIs/URIs/Intents
!
Static
Dex Analysis
Names, and Code
Summarization

L Visible Information
Invisible Information
User Reviews —>| Review Analysis

Fig. 1. Overview of ReviewSolver: Localizing function errors.

Function Error
Related Reviews

—>

that can cause the exception, we can locate it by checking
the corresponding framework APIs. We illustrate this pro-
cedure with Example 7.

Example 7 com. £sck.k9: “there’s a socket exception when
it polls”.

ReviewSolver This exception is related to “socket”.
According to the Android official document [28], the Socke-
tException is thrown by the methods of the java.net.Socket
class. By searching the classes that call java.net.Socket related
APIs, we discover the com.fsck.k9.mail.store.imap.imapconnec-
tion class containing this exception.

The analysis of the above examples shows that, by
extracting semantic information from both the reviews and
bytecode, we can remove false positives and false negatives
when localizing function errors in reviews.

3 SysTEM DESIGN

3.1 System Overview

Fig. 1 shows the procedure of ReviewSolver. After crawl-
ing reviews from Google Play, the review analysis module
identifies function error reviews (Section 3.2). After down-
loading different versions of all APK files and their corre-
sponding release time, the static analysis module extracts
useful information from each APK file (Section 3.3). By
combining the information from reviews and APK files,
ReviewSolver maps the function error reviews to the prob-
lematic code (Section 4).

3.2 Review Analysis

The review analysis module identifies the function error
related reviews from those reviews. Then, this module per-
forms sentiment analysis on the sentences of each function
error related review and remove positive ones because they
do not describe the errors. This module extracts the verb
phrases and noun phrases from the natural and negative
sentences. These phrases facilitate localizing function errors.

3.2.1 Pre-Processing User Reviews

We remove the non-ASCII characters and split the remaining
content into distinct sentences by using NLTK [29]. To
remove typos, we leverage the edit distance [30] to discover
the correct word if the word is not found in the dictionary.
Abbreviations are replaced with their original words (e.g.,
“pls” to “please,” “pic” to “picture”). For each sentence in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Parse Tree:
(ROOT
(s

(VP (VBZ does) (RB not)
(VP (VB contain)

E (NP (DT the) (NN app))
! (NP (DT any) (NNS bugs))))))

Typed Dependency:
ROOT

nslubj—v * r dobj—|

|
1
1
1
|
1
\ the app does not contain any bugs
1
1
1
1
1

L e 4 _ L@

Fig. 2. Syntactic analysis: Parse tree and typed dependency of the sen-
tence: “the app does not contain any bugs”.

the review, we leverage Stanford Parser [31] to construct the
parse tree and the typed dependency among words.

The parse tree contains the phrases of the sentence and the
Part Of Speech (POS) tags of words. Each phrase occupies
one line. For example, NP in Fig. 2 means noun phrase and
VP in Fig. 2 refers to verb phrase. The typed dependency
relation refers to the grammatical relation between two
words [32]. For example, dobj in Fig. 2 means direct object.

3.2.2 Identifying Function Error Reviews

We use supervised machine learning algorithms to identify
the function error reviews described in Section 2. In particu-
lar, we use the TF-IDF values, N-Grams (N = 2,3) as features,
because these features are widely used in text classifications
based on supervised machine learning models [20], [25],
[33], [34]. TF-IDF (i.e., Term Frequency-Inverse Document
Frequency) measures how important a word is to a
review [35]. It is calculated by multiplying term frequency
(TF) and inverse document frequency (IDF). TF measures
how frequently a word occurs in a review while IDF meas-
ures how important a word is. The frequent words are less
important (e.g., “an,” “the”).

Number of times word t appears in a review
TF() = f w ppears

Total number of words in the review

IDF(t) = log Total number of reviews

Number of review with word t in it

N-Grams are a set of co-occurring words within a given
window [36]. For example, given the sentence shown in
Fig. 2, we extract “the app does,” “app does not,” “does not
contain,” “not contain any,” and “contain any bugs” as N-
Gram features (N = 3). Note that without conducting syntac-
tic analysis on each sentence, the TF-IDF (which only consid-
ers distinct words) and N-Gram features (which has fixed
window size) cannot recognize the relation between nega-
tion words (e.g., “not”) and error-related words (e.g., “bug”).
Therefore, the classifier (e.g., those in [20], [25]) will regard
the sentence of Fig. 2 as a function error review by mistake
(i.e., a false positive). To address this issue, we analyze the
typed dependency relations of the sentence. Since both
“bug” and “not” are related to verb “contain,” we regard

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

TABLE 2
Classifier Selection: 10-Fold Cross-Validation Result
Classifier Precision Recall F1-Score
Naive bayes 56.8% 99.6% 72.2%
Random forest 85.3% 87.8% 86.5%
SVM 87.5% 84.2% 85.7%
Max entropy 55.6% 99.7% 71.3%
Boosted regression trees 91.4% 92.0% 91.6%

“bug” as being related to “not,” and thus remove the word
“bug” related features before classification.

To train a classifier for identifying function error
reviews, we create a training dataset with 700 positive
reviews and 700 negative reviews. We test multiple algo-
rithms (including, naive bayes, random forest, SVM, max
entropy, boosted regression trees) by performing 10-fold
cross-validation. Table 2 lists the precision, recall rate, and
Fl-score of each classifier. Finally, we adopt the boosted
regression trees [25], [37] because it has the best perfor-
mance (i.e., precision 91.4%, recall rate 92.0%, and F1-score
91.6%). The boosted regression trees aggregate the result
from a sequence of decision trees. To train an expressive
model, the algorithm iterates multiple times. During each
iteration, this algorithm selects the feature that best parti-
tions the data to create tree models. It will also adjust the
weight of the samples classified incorrectly to enable the
next tree to correctly classify them [38]. When performing
the classification, we do not split reviews into sentences
because considering individual sentences may miss the
context information in other sentences.

3.2.3 Removing Positive Sentences

Since some positive sentences of function error reviews do
not describe errors, we identify them through performing
sentiment analysis [39], [40]. These positive sentences are not
used when localizing the errors because they will generate
false positives. In previous version [19], we directly used the
scores of reviews to filter positive reviews (i.e., Rated 4 or 5
stars out of five stars). We do not employ this method
because many function error reviews have high scores. For
example, the function error review “... Crashes in the middle
of writing a post and there is no backup...” has a high score
(i.e., Rated 4 stars out of five stars). To measure how many
reviews with high scores (i.e., Rated 4 or 5 stars out of five
stars) describe the function errors, we randomly selected 900
user reviews of 18 apps. Then, we manually read these user
reviews and determine the number of function error reviews
for each score. The result is shown in Table 3. In total, we dis-
covered 333 function error reviews, and 24.6% of them (i.e.,
(64+18)/333) are reviews with high scores (i.e., Rated 4 or 5
stars out of five stars). This result shows that if we use the
scores of reviews to filter positive reviews, we will lose about
a quarter of function error reviews.

One function error review contains multiple sentences,
which are obtained through NLTK (Section 3.2.1). Then, we
employ the sentiment analysis tool to process them. If the
result of one sentence is positive, the sentence will be dis-
carded since these positive sentences usually do not
describe the errors (e.g., “love u first of all for making this

1469

TABLE 3
Number of User Reviews With Different Scores and the Number
of Function Error Reviews Contained in Them

Review Number of Number of
Score Review Error Review
1 150 112

2 97 64

3 118 75

4 155 64

5 380 18

Total 900 333

app...”). Otherwise, if the result is negative or neutral, the
sentence will be kept since it may describe the function
error. Jongeling ef al. [41] found four sentiment analysis
tools commonly used in previous software engineering
studies (i.e., SentiStrength [42], [43], Alchemy [44], Stanford
NLP sentiment analyser [45], and NLTK [46]). Since
Alchemy was retired in March 2018, we conducted an addi-
tional experiment to choose the best sentiment analysis tool
from SentiStrength, Stanford NLP sentiment analyser, and
NLTK. In this experiment, we compare the ability of identi-
fying the negative reviews by using these three sentiment
analysis tools. For the 900 randomly selected user reviews
(same as Table 3), we manually read each review. If it con-
tains at least one negative sentence, we add one “#NEG”
label for it (e.g., “A bad app, often crash”). Then, we use these
three sentiment analysis tools to process these reviews with
the same procedure. If the tool finds one negative sentence
in the review, it also adds one “#NEG” label for it. Finally,
we compare the number of negative reviews discovered by
these three tools with that discovered through manual
annotation. The result is shown in Table 4. For the 428 nega-
tive reviews discovered through manual annotation, the
number of negative reviews also discovered by SentiS-
trength (i.e., 207) is much higher than that of NLTK (.e., 51)
and Stanford NLP sentiment analyser (i.e., 56). Since the
result of SentiStrength is most similar to the result manual
annotation, we think that SentiStrength achieves the best
performance. We select SentiStrength to perform sentiment
analysis on each sentence of one review.

Especially, if the sentence contains adversative coordi-
nating conjunctions (e.g., “but,” “whereas,” “nevertheless”),
this sentence expresses or indicates contrast or opposite
meaning between two statements [47], [48]. The negative or
neutral part of the sentence may describe the errors while
the positive part of the sentence can be discarded. Thus, we
leverage the parse tree of each sentence to identify the
adversative coordinating conjunctions by using the “CC”
label, which means “coordination”. We combine the words
before or after the adversative coordinating conjunctions to
construct one distinct sentence (similar to RISING [15]).
Then, we also employ CoreNLP to obtain the sentiment
analysis result of the constructed sentence. For example, the
review “It's a great app BUT since the last update, my stats page
doesnt work properly.” will be transformed into two senten-
ces: (1)“It's a great app,” the positive part of the sentence.
(2)“since the last update, my stats page doesnt work properly.,”
the negative part of the sentence. We discard (1) and keep
(2) for further analysis.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1470

TABLE 4
Number of Reviews for Each Score, Number of Negative
Reviews Discovered Through Manual Annotation, and Number
of Negative Reviews Also Discovered Through Three Sentiment
Analysis Tools (i.e., SentiStrength, NLTK, Stanford NLP
Sentiment Analyser)

Score Numof #Neg #Neg #Neg #Neg
Review Manual SentiStrength NLTK Stanford
1 150 144 77 26 25
2 97 90 48 7 13
3 118 92 40 12 12
4 155 72 29 5 4
5 380 30 13 1 2
Total 900 428 207 51 56

3.2.4 Extracting Verb Phrase and Noun Phrase

To capture the semantic information of function error
reviews, we extract the verb phrase and noun phrase by
using the parse tree and typed dependency relations. The
verb phrase contains a verb and its object (e.g., “import
contact”). The noun phrase contains a word or group of
words containing a noun (e.g., “the last phone call”). We
do not employ the bag-of-words model to represent the
semantic information of review because the word fre-
quency cannot capture the part-of-speech (POS) tags of
words. For example, although both “contact me if you
like” and “import contact” contain the word “contact,” the
former is a verb (cannot be mapped to the behavior of the
app) and the latter is a noun (can be mapped to the access
of contact list through content provider in the app). Since
the verb/noun phrases retain the part-of-speech tags of
words, we can remove the false mappings from reviews to
code(Section 4).

The verb phrase is extracted from typed dependency. For
the sentence shown in Fig. 2, as the verb is “contain” and the
object is “any bugs,” we acquire the verb phrase (i.e.,“con-
tain any bugs”) by checking the typed dependency relation
(i.e., dobj, nsubjpass) between words. The noun phrase is
obtained through parse tree. For each line of the parse tree,
if the line starts with NP (i.e., noun phrase), the phrase of
the line will be extracted as noun phrase. For example, for
the sentence of Fig. 2, we extract two noun phrases (i.e.,
“the app” and “any bugs”) from the parse tree.

When extracting the verb phrases and noun phrases
from function error related reviews, we found that some
reviews contain more than one sentence. Some of the sen-
tences describe the context of function errors while others
do not. For these sentences unrelated to function errors, if
we extract verb phrases and noun phrases to localize the
function errors, we will obtain many false mappings
between the function error reviews and code. Previous
researchers [49] found that, when writing reviews, some
users will describe the features that can be added to
improve/enhance the apps’ functionalities (i.e., “feature
request”). Moreover, some other users will use reviews to
obtain some information from developers (i.e., “information
seeking”). Finally, some users will provide some information
for the developers through reviews (i.e., “information
giving”).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Although the sentences related to “feature request,”
“information seeking,” and “information giving” are impor-
tant for developers, they are not related to the function errors
of the apps. Thus, they should be ignored when extracting
the verb phrases and noun phrases to localize the function
errors to avoid generating false mappings. To achieve this
goal, we employ the state-of-the-art system developed by
Panichella et al. [49] to identify and filter the “feature
request,” “information seeking,” and “information giving”
related sentences. This system combines NLP, text analysis,
and sentiment analysis techniques to classify sentences of
user reviews into these three categories automatically. We
also tested the effectiveness of this system [49] by using 1,500
randomly selected function error reviews. The result shows
that it successfully filtered 146 sentences (e.g., “I use Nougat
(7.0) android version”).

3.3 Static Analysis

The static analysis module is intended to discover the
behaviors contained in the APK files. Since the developers
keep changing the app code according to user reviews and
releasing new versions of APK files on app market, we first
download all versions of APK files and their corresponding
release time in order to avoid incorrect mapping between
function error reviews and code (Section 3.3.1). Given an
APK file, we analyze its AndroidManifest.xml file and
Dex file to extract seven kinds of information to facilitate
mapping function error reviews to code (Section 3.3.2).

3.3.1 Downloading APK Files

For each app, we download all versions of APK files and
their release times to avoid mapping the function error
review to non-existent classes or methods. The principal
reason is that the developers may modify the app code (e.g.,
add/change/remove some classes and methods) when
releasing new versions of APKs. To correctly locate the
function error described in the review, we check the publi-
cation time of the review. Then, we identify the APK file
released before the publication time to localize the error.
Otherwise, incorrect mappings will be generated (i.e., map-
ping the review to the classes or methods created after the
publication of the review). For example, we compare two
versions of APK files of the app org.thoughtcrime.
securesms. The version released on January 24, 2018 con-
tains 1,850 classes (ignoring third party libraries). Another
version released on December 14, 2018 contains 2,446 clas-
ses (ignoring third party libraries). Compared with the ver-
sion released on January 2018, 113 classes have been
removed (113/1850, 6.1%), and 709 classes are new created
ones (709/1850, 38.3%). For one function error review pub-
lished on January 2018, if we map it to these new created
classes, an incorrect mapping is generated (i.e., these classes
do not exist when users finding the error).

Various websites can be used to download all versions of
APK files. For one open-source app, the websites (e.g., F-
droid [50] and Github [51]) provide the service of download-
ing different versions of APK files, their source code, and their
release time. For one closed-source app, some third party
websites (e.g.,, ApkMonk [52], APKPure [53]) allow down-
loading different versions of APK files and their release time.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

public void onClick(View v) {
Intent v3;
Dat. v3 = new Intent("android.media.action.IMAGE CAPTURE");
ata (v3.putExtra("output", CatWangActivity.mCapturedimageURI);
this.startActivityForResult(v3, 1888);

Dependency

Fig. 3. Code Example: Send intent to take picture.

3.3.2 Extracting Behaviors From APK File

Given an APK file, we first extract the AndroidManifest.
xml file and Dex file from it. Then, we use Vulhunter [54] to
process the Dex file and create android property graph
(APG) of the app. APG combines abstract syntax tree (AST),
method call graph (MCG), and data dependency graph
(DDG). When building the DDG, we leverage the IccTA [55]
to identify the target component of intent.

Extracting Permissions and Activities. We parse the Android-
Manifest.xml file to extract the permissions and activities.
The starting activity is identified through the action “android.
intent.action. MAIN” and the category “android.intent.cate-
gory. LAUNCHER” in the intent filter.

Extracting APIs/URIs/Intents, Error Message, Class/Method
Names, and Method Summarization. We analyze the APG to
identify three kinds of information (i.e., APIs/URIs/intents,
class/method names, error messages). Because the raw
method name may fail to reflect its function (i.e., the method
name is incorrect or it has been replaced with meaningless
characters [56]), apart from method names set by develop-
ers, we also employ the deep learning method Code2vec [57]
to generate the code summarization of each method based
on the statements included in it.

To identify APIs, we check all the assign statements and
invoke statements contained in AST. If the invoked method
name is a framework API, we record it so that they can be
used to localize API related function errors.

To identify URIs, through which apps can get information
(e.g., contacts), we first determine the content provider oper-
ations (e.g.,ContentResolver.query()), and then conduct back-
ward taint analysis by traversing the DDG [58]. In particular,
the traversal starts from the statements related to content
provider operations and ends at the statements that define
local variables. All URI used in code are recorded. PScout [59]
uses static analysis to obtain the mapping between the per-
missions and their related APIs/URIs. After discovering the
APIs/URIs used in code, we leverage the mappings pro-
posed by PScout to find out the permissions used in code.

By sending the intents to other apps, an app can call
other apps to perform specific tasks. For example (Fig. 3),
the app com. fs.catw sends out an intent (i.e., type is
android.media.action.IMAGE_CAPTURE) to the the
camera app for capturing an image and obtaining it. To
identify the intents sent by the app, we first collect all intent
related statements (e.g, Activity.start ActivityForResult()), and
then perform backward taint analysis on it. The sources of
this taint analysis are the statements that call APIs to send
out intent. The sinks are the statements that create new vari-
ables (i.e., statements that do not contain any outgoing data
dependency relation). All string parameters appeared in the
path will be recorded (e.g., android.media.action.
IMAGE_CAPTURE in Fig. 3).

1471

If error occurs, an app may notify users the details [60] by
using AlertDialog, TextView, or Toast. To identify the error
message pop-up in each class, after determining the state-
ments that invoke error message related APIs (e.g., AlertDia-
log.setTitle(), AlertDialog.setMessage(), TextView.setError(),
and Toasts.makeText()), we conduct backward taint analysis.
The sources of this taint analysis are the statements that call
the APIs to pop-up error message. The sinks are also the
statements that create new variables. All the string parame-
ters appeared on the path are recorded.

After building the AST, we record all class names and
method names. Since class and method names may provide
information about the corresponding classes and meth-
ods [61], we extract them and use them to locate app specific
task errors described in user reviews (Section 4.1). If the
extracted method names do not correctly describe the func-
tions of their included statements, they cannot be used to
localize the app specific task related errors (Table 1 case (1)).
Such issue exists if the developers do not carefully design
the method names or if the developers employ obfuscation
technique to hide the method names [56], [62]. To tackle this
problem, we employ the state-of-the-art code summariza-
tion system Code2vec [57] to summarize the function of
each method. In Section 4.1.1, we use the summarization of
each method (i.e., a list of words) to assist localizing func-
tion errors. Code2vec learns a neural model from the AST
paths of a dataset of methods. This model represents the
code snippets as distributed vectors and then it can predict
semantic properties of new code snippet. The reason is,
when training the model, the input to the Code2vec model
is a code snippet (i.e., C) and a corresponding tag/label L
(e.g., method name). Through training, a tag vocabulary is
learned

tags_vocab € RV,

where Y is the set of tag values found in the training corpus.
Each row of tags_vocab shows the embedding of one tag
(e.g., the method names “contains,” “canHandle”). Then,
the predicted distribution of the model is computed as the
normalized dot product between the code vector v and each
tag embedding. In other words, given code snippet C, the
probability that a specific tag (i.e., method name) y; is the
normalized dot product between the vector of y; and the
code vector v. We downloaded 1,300 open-source Android
projects from F-droid [50] to train a new neural model for
Android apps. We do not use the existing model provided
by Code2vec (trained by using 14 millions Java meth-
ods [63]) since it cannot handle Android specific life-cycle
methods (e.g., onCreate()) and Ul callbacks (e.g., onClick()).
To measure the performance of the trained neural model,
we conduct an experiment by using the source code of 22
open-source apps downloaded from F-Droid. For each app,
we first compile the source code to get an obfuscated APK
file by using ProGuard [56]. The class names and method
names are hidden (i.e., replaced by “a,” ‘b”). Then, we use
the trained neural model to generate code summarization
for each method. Finally, we use the words extracted from
the raw method names of source code as the ground truth
and measure how many words contained in the raw
method names are included in the code summarization. The

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1472

result shows that the method names of these apps contain
10,688 words, and the trained neural model can predict
3,674 of them (i.e., 3674/10688 = 34.4%). This result shows
that, even if the method names are removed through obfus-
cation, the code summarization can also discover about 35%
of words contained in the raw method names.

Extracting Visible/Invisible Label Information From GUI. We
first recover the structure of each activity, and then extract
the visible and invisible label information from it. The for-
mer includes the texts shown in GUL If the user review
mentions such information, we look for the Ul component
that contains the corresponding text for localizing problem-
atic code. The invisible label information refers to the ids of
widgets/UI components in the GUL Since developers may
include the purpose of the widget when setting the id (e.g.,
quoted_text_edit), we can use them to understand the
function of each widget (e.g., “edit text”).

We use GATOR (Version 3.6 [64]) to recover the GUI struc-
ture of all activities [65]. GATOR first parses the manifest
file (to identify the activities), the layout file (to get the par-
ent-child relationship between widgets), and resource id file
(to obtain the mapping between id names and values).
Then, it inspects each method and conducts reference analy-
sis to construct the constraint graph of GUI related objects.
Finally, GATOR combines the information obtained from
the layout file and the dynamically generated widgets
inferred from the constraint graph to reconstruct the GUI
structure.

After obtaining the GUI structure of each activity, to
identify the text displayed by the app, we extract the values
of the android:hint and android:text attributes. If
the value of one attribute is an id of String resource, we
inspect the res/values/strings.xml file to get the cor-
responding String (e.g., “@string/account_setup_hint” in
Fig. 4).

To extract the invisible information from the ids of the
widgets of the GUI, for the id of each widget, we split it into
a series of words. For example, in Fig. 4, the id show_pass-
word is transformed to “show” “password”. Since some
developers use abbreviations when setting the ids (e.g., use
“btn” to represent “button”), for each extracted word, we
design an “abbreviation matching method” to identify the
abbreviations and replace them with the raw words. In
detail, through checking the UI related abbreviations sum-
marized in [66], [67], we obtained 39 UI related nouns and
their corresponding abbreviations (e.g., “rb” means “radio
button”). For each word extracted from the id, we compare
it with the obtained abbreviation list to determine if it is an
abbreviation or not (e.g., “btn”). If so, we replace the abbre-
viation with the corresponding raw word (e.g., “button”).

4 LocALizING FUNCTION ERRORS

By correlating the information extracted from user reviews
and APK files, ReviewSolver first localizes app specific
errors (Section 4.1) and general errors (Section 4.2), and then
ranks the selected classes before recommending them to the
developer (Section 4.3). Note that, for each function error
review, we check its publication time and then identify the
last version of APK file released before this time to locate
the error in the app code.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

:] Invisible information

<LinearLayout ... > [___ﬁ Visible information

<EditText android:i
<EditText android

"@id/edit_account" android:hini="@string/account setup hint"/>
id/edit_password" android:hint="Password" />

</LinearLayout>

Fig. 4. Snippet of a layout file.

4.1 Localizing App Specific Errors

For the context information defined in Table 1, six of them
(i.e., app specific task, updating app, GUI, error message,
opening app Activity, registering account interface) con-
tained in user reviews are app specific. We describe how to
use them to localize the function errors in this section.

4.1.1 Using Class/Method Name and Code

Summarization

If the function error appears when performing app specific
tasks, for each verb phrase extracted from function error
review, we check whether it is similar to the raw method
name of each method or the summarization generated by
Code2vec (Section 3.3.2). If so, we recommend the devel-
oper to check the corresponding method. Since the raw
method name is a String that cannot be used when calculat-
ing the semantic similarity, we leverage the camel case to
convert the method name to verb phrase by referring the
method described by McBurney et al. [61]. For example, we
transform getEmail() to “get Email”. If the method name
only contains a verb, we use the words extracted from the
class names as the object of the verb phrase (e.g., we trans-
form MessageListFragment.move() to “move Message List
Fragment”). Since the life-cycle methods in Android apps
(e.g., onCreate()) may have the same method names, to cor-
rectly describe their functions, we remove their stopwords
(e.g., “on”) and combine the remaining verbs with compo-
nent names to create verb phrase.

To determine whether two phrases are similar or not, we
leverage Word2Vec [68] to calculate the semantic similarity
between two phrases, because representing the word with a
series of words can capture syntactic and semantic regulari-
ties between words [69], [70]. More precisely, by using the
model trained on Google News dataset (contains 300-
dimensional vectors for 3 million words and phrases) [71],
we transform each word (word;, i =1,..,n) of the phrase
into a 300-dimensional vector. We combine them to get the
vector of the phrase.

1 n
Vector(phrase) = — Z Vector(word,).
gt

Then we calculate the cosine similarity between two
phrase vectors. If the similarity is higher than the threshold
value (0.68 by referring [72]), we regard them as similar ones.

Vector(phrasel) e Vector(phrase2)
[Vector(phrasel)||||Vector(phrase2)||”

CosineSimilarity =

4.1.2 Using Visible/Invisible Label Information

To localize the errors related to GUI, we compare the verb/
noun phrase extracted from review with the visible and

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

TABLE 5
Semantic Patterns of Vaguely Describing the Error
Semantic Pattern Example
P1 [function] NEG work “sync does not work”
P2 [subject] NEG [function] “I cannot register”
P3 [function] fail “Login always fails”
P4 [function]stopped “Update button has stopped”

invisible label information extracted from code. For the for-
mer, we check two kinds of noun phrase extracted from
review: (1) If the user explicitly points out the widget (e.g.,
“reply button”), we regard the phrase as GUI related
phrase. In this case, we extract the word modifying the wid-
get (e.g., “reply”) and look it up on the visible label informa-
tion; (2) If the user implicitly describes the type of the issue
(e.g., “Certificate issues”), this phrase may be relevant to the
GUL. The reason is that users interact with the GUI of the
app to perform some task (e.g., “uploading photo”). If
errors appear during this procedure, they will describe the
task (e.g., “uploading photo error”) in the corresponding
review. In this case, we extract the word modifying the issue
related noun (e.g., “Certificate”) and search it on the visible
label information. For the latter, we check the verb phrase
extracted from the user review by comparing its semantic
meaning with the verb phrase transformed from the invisi-
ble label information.

When reading the function error review, users can also
vaguely describe the error (i.e., some functions cannot
work). Manually summarizing the semantic patterns from
these sentences is time-consuming and error-prone. Thus,
we select the state-of-the-art pattern extraction tool
NEON [73] to extract semantic patterns. After parsing the
semantic graphs of sentences, NEON identifies the recur-
rent grammatical structures (i.e., syntactical rules) appear-
ing in them and then regards them as the patterns. After
selecting 100 such sentences and using them as the input of
NEON, we obtained four semantic patterns (shown in
Table 5). [function] means the problem function. NEG
means negation related words (e.g., “cannot”) and phrases
(e.g., “does not”). To localize such errors, we first extract the
function word of these patterns, and then look them up on
the GUI’s visible label information. The activities that con-
tain these words will be recommended to the developer.
For example, for P2, we recommend the developer to check
the activity that contains the verb “register”.

4.1.3 Localizing Errors Related to Error Message

Users may describe the error message precisely. For exam-
ple, given the review “I receive an error message saying “Failed
to send some messages”,” we extract the error message and
compare it with the error messages extracted from the app’s
APK file.

Sometimes, the user may simply point out the type of the
error, and hence we first check whether the noun phrases
contain error related words (e.g., “error,” “bug,” “fault”). If
so, we extract the word that modifies these error related
words. Then, we check all the APIs invoked in code. If the
API's description mentions this word, we recommend the
corresponding class to the developer. For example, in the

1473

review “a connection error message at the bottom,” since the
user mentions that the error is related to “connection,” we
recommend the developer to check the classes that call the
API HttpURLConnection.getInputStream().

4.1.4 Localizing Errors Related to Opening App Activity

If the function error review contains verb phrases such as
“open app,” “launch app,” or “start app,” the error may
appear when the app is launched. Since the onCreate(),
onStart(), and onResume() methods of the starting activity
are called sequentially when an app is launched, for this
kind of error, we recommend the developer to check these
three methods of the starting activity.

4.1.5 Localizing Errors Related to Account Registration

If the function error review contains verb phrases such as
“register account,” “sign in,” “login in” or if the review con-
tains noun phrase such as “registration,” the error may
appear when registering account. For this kind of error, we
recommend the developer to check the activity related to
registering account. We search the text content of each activ-
ity and report the activity that contains phrases related to
account registration (e.g., “sign in,” “login”).

4.1.6 Localizing Errors Related to App Updating

If the function error review contains updating related
phrases (e.g., “update app,” “latest update,” “new update,”
“recent update”), this error may be caused by the app
update. For such kind of error, we first check other verb/
noun phrases of the review. If they can be mapped to the
app specific error or general error, we extract the corre-
sponding classes and recommend them to developers. Oth-
erwise, we recommend the developer to check the code
difference between the latest two versions.

4.2 Localizing General Errors

For the context information defined in Table 1, three of them
(i.e., API/URI/intent, general task, exception) are generally
contained in user reviews of different apps. We describe
how to use them to localize the function errors in this section.

4.2.1 Localizing Errors Related to APIs/URIs/Intents

If the errors described in the reviews are related to the APIs,
URISs, or intents (i.e., Table 12 case (7)), we propose Algo-
rithm 1 to locate them. For API, we compare the verb phrase
extracted from review with the verb phrases related to the
API (line 3-5 in Algorithm 1). For URI, we compare the
object of the verb phrase extracted from review with the
noun phrases related to the URI (line 11-13 in Algorithm 1).
For intent, we compare the object of the verb phrase
extracted from review with the noun phrases related to the
intent (line 19-21 in Algorithm 1). If they are similar, we rec-
ommend the developer to check the API/URI/intent and
corresponding class.

We extract the verb phrase related to API from API signa-
ture, description, and permission. The signature of an API
contains its class, return value, method name and parame-
ters (e.g., <android.location.Address: double getLatitude() >).

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1474

We convert the API signature into verb phrase by using the
method described in Section 4.1. We also extract verb phrases
from its official description by using the typed depen-
dency [32]. For example, we extract verb phrases such as
“open communication link,” “establish connection” from the
description of the API URLConnection.connect().

Algorithm 1. Find the Classes Related to the API/URI/
Intent

Input: VerbPhrase: Verb phrase extracted from the review;
ApiSet: APIs provided by Android document; UriSet:
URIs provided by PScout; IntentSet: intent provided
by Android document.
Output: ClassList: the classes related to API/URI/intent.
1: Function LocateApiUriIntent(VerbPhrase, ApiSet,
UriSet, IntentSet:)
ClassList=[]
foreach API in ApiSet do
ApiPhraseList = get APIRelated Phrases(API)
foreach ApiPhrase in ApiPhraseList do
if Similar(VerbPhrase, ApiPhrase) then
ClassList.add(getCaller(API))
end
end
10: end
11: foreach URI in UriSet do
12: UriNounList = getURIRelatedNouns(URI)
13: foreach UriNoun in UriNounList do

©

14: if Similar(getObj(VerbPhrase), UriNoun) then
15: ClassList.add(getCaller(URI))

16: end

17: end

18: end

19: foreach Intent in IntentSet do

20: Intent NounList = getIntent Related Nouns(Intent)
21: foreach Intent Noun in Intent NounList do

22: if Similar(getObj(VerbPhrase), Intent Noun) then
23: ClassList.add(getCaller(Intent))

24: end

25: end

26: end

27: return ClassList;

For each verb phrase extracted from review, we use the
Word2Vec [68] to calculate the semantic similarity and
determine if it is similar to any verb phrases extracted from
the method name or description of the API or not. If true,
we also suggest developers check the APL If the verb of the
verb phrase extracted from review is related to information
collection (e.g., “gather”), access (e.g., “read”), or utilization
(e.g., “use”) related verbs [74] and its object is similar to the
personal information protected by permission, we also rec-
ommend the developer to check this permission related API
and corresponding class.

Since there is no official description of URI, we cannot
extract verb phrases related to URI. To map the function
error review to URI, we compare the noun phrases described
in review with the noun phrases related to the URI To obtain
the latter, we first leverage PScout [59] to get the permission
related to the URIL Then, we regard the noun phrase
extracted from the permission description [75] as the noun
phrase related to URI. For example, the URI “content: //

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

call_log” is protected by the READ_CALL_LOG permis-
sion. We extract “call log” from the permission description
(i.e., “Allows an application to read the user’s call l0g.”).

Moreover, we manually define the noun phrase of each
intent by referring the Android official document. The
Android official document [76] provides 11 kinds of common
intents. For example, “camera” is related to the intent with the
action android.media.action.IMAGE_CAPTURE.

4.2.2 Localizing Errors Related to General Tasks
With Q&As of Third Party Websites

If the error described in the user review appears when per-
forming general tasks (e.g., download files), we search the
Q&As of third party websites to obtain their implementa-
tion. We first download the questions and answers from the
website (Step 1). After identifying the framework APIs com-
monly used in the implementation (Step 2), we use these
framework APIs to locate the error in app code (Step 3).

Step 1: To obtain the implementation (i.e., code snippets)
of general tasks, we select the Q&As in Stack Overflow [23],
which is the largest community for developers [77]. We
download 1,272,968 Android related questions and their
corresponding 1,054,122 answers [78]. Each question has a
short title that summarizes the encountered problem and a
long text that describes the details of the problem. One ques-
tion may have one or more answers.

Step 2: Both the question description and the answers may
have code snippets, which can be extracted through the
< code > tag. Thus, we can build up mapping between the
question title and the framework APIs contained in the corre-
sponding code snippets. To identify the framework APIs
related to each question, we design a parser to extract the
called framework APIs from the code snippets. For each line
of the code snippet, we check if it defines a new object or not.
If so, we extract the class name and the name of the object. If
one line of the code snippet does not define a new object, we
employ the javalang [79] to extract the called method name.
Once the name of the called method is extracted, we combine
the class name of the object with the extracted method name.
Then, we determine if they are consistent with that of one
framework API or not. If true, we record this framework API
since it is related to the question. Finally, we obtained
1,079,053 code snippets. Each code snippet contains at least
one framework API identified by javalang. 553,681 of them
are from Android related questions and 525,372 of them are
from Android related answers.

Step 3: Based on the framework APIs used to implement
the general tasks, we design the algorithm 2 to locate the
corresponding errors. For each verb phrase of the function
error review, we first identify the questions whose titles
contain the same verb phrase because these questions may
contain the code implementation (i.e., code snippets) (Line
4-5). For each matched question, we extract the invoked
framework APIs from their code snippets (Line 6). For the
same task, developers’ code implementation are signifi-
cantly different but the invoked framework APIs are simi-
lar. We count the frequency of each framework API (Line
8). The top k most frequent framework APIs (Line 12) and
the corresponding classes that invoke these framework
APIs are identified (Line 14-15). Currently, we set & as 5.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

Algorithm 2. Find the Classes Related to General Tasks

Input: VerbPhrase: Verb phrase extracted from the review;
QuestionSet: Set of Android related questions in Stack
Overflow;

Output: ClassList: the classes related to this verb phrase.

1: Function LocateGeneralTasks(VerbPhrase, QuestionSet):
2 ClassList=[]

3: APICount={}

4: foreach Question in QuestionSet do

5: if containInTitle(VerbPhrase, Question) then

6

7

8

APIs = getRelated APIs(Question);

foreach API in APIs do
: APICount[API| = APICount[API| + 1;
9: end
10: end
11: end

12: topAPIs = getMostFrequentAPIs(APICount);
13: foreach API in topAPIs do

14: relatedClasses = getClassesCallAPI(API);
15: ClassList.addAll(relatedClasses);

16: end

17: return ClassList;

4.2.3 Localizing Errors Related to Exception

Since the exception discovered by users are generated when
invoking framework APIs or methods defined by develop-
ers, to locate these errors in app code, we first identify the
exceptions thrown by the framework APIs or the methods
defined by developers by using the Android document and
the AST (Step 1). Then, we map the user review to these
exceptions (Step 2).

Step 1: For the framework APIs, the exceptions that they
can throw are described in the official document. After pars-
ing the Android official document, we identify 5,808 frame-
work APIs distributed in 1,172 classes that throw 195 types
of exceptions. For example, the framework API android.loca-
tion.LocationManager.requestLocationUpdates() throws two
kinds of exceptions (i.e., Illegal ArgumentException, Securi-
tyException). For the methods defined by developers, due to
the absence of the software documents, we check the state-
ments contained in each method to determine the types of
exceptions it can catch.

Step 2: For each noun phrase extracted from the review, if
it contains the String “exception” or “Exception,” we extract
the words before it as the type of the exception. Then, based
on the result of Step 1, we identify the framework APIs or
methods defined by developers throwing this type of excep-
tion. Finally, we output the classes that call these framework
APIs or the methods defined by developers because these
classes can throw the exception mentioned in the review.

4.3 Ranking the Classes

Since one function error review may contain multiple types
of context information, we employ multiple approaches to
map function error reviews to code. The verb/noun phrases
of one review may be mapped to multiple methods of multi-
ple classes. For example, the review “I get an out of memory
error message and can’t take pictures” contains two types of con-
text information. One is an error message (i.e., “out of memo-
ry”), and the other is API (i.e., “take picture”). To avoid

1475

generating too many code snippets for developers, we com-
bine the methods included in the same class together and
output the most important classes for users. In detail, after
computing the importance of these classes, we recommend
the top N most related ones to developers (Currently, N
is 15). Assume that we find n mappings between verb/
noun phrases and classes (ie., mi,ma,...,my), m; =<
phrasej, class;, > , by using the approaches proposed in Sec-
tions 4.1 and 4.2. For each class, we calculate the importance
by counting the number of mappings between different
phrases and the target class. For example, if we find one
mapping < phraseA,classA > , the importance of classA
will be increased by one. The selected classes are ranked
according to their importance. If many classes share the
same importance, we analyze the class dependency relations
of these classes and select the classes that are dependent on
the largest number of classes. The reason is, if one class is
implemented by using many other classes, it has a higher
probability to implement the core function of the app. Thus,
it has a higher probability to trigger the function errors. A
class dependency between classes Classy and Classp indi-
cates that one method is defined in Class, and this method
is invoked by the methods of Classp [80].

5 EXPERIMENTAL RESULT

After describing the dataset used in experiments (Sec-
tion 5.1), we conduct extensive experiments to answer the
following research questions:

RQ1: Can ReviewSolver correctly identify reviews
related to function errors (Section 5.2)?

RQ2: How is the performance of ReviewSolver com-
pared with the state-of-the-art system ChangeAdvisor [13]
and Where2Change [14] (Section 5.3)?

RQ3: How many function error related reviews can be
addressed by ReviewSolver (Section 5.4)?

5.1 Dataset

To measure how many function error related reviews can be
solved, we select 18 apps that can be downloaded from
Google Play and provide source code in F-Droid or Github.
We first downloaded all versions of APK files and their
release time. Then, we collect their user reviews from Goo-
gle Play. Table 6 shows the APK id, name, number of APK
files of each app. For each app, we download the latest
1,500 reviews to analyze (i.e., the dataset contains 27,000
user reviews in total).

To answer RQ2, we first employ ReviewSolver to iden-
tify the function error related reviews, and then apply
ReviewSolver, ChangeAdvisor [13], and Where2-
Change [14] to mapping such reviews to code. ChangeAd-
visor and Where2Change are implemented by the authors
of corresponding papers. We downloaded them from [81]
and [82], respectively. We invite three PhD students to con-
struct the ground truth of the mappings from reviews to
code by exploiting two kinds of documents (i.e., bug reports
and release notes). Each student has three years of experi-
ence in developing Android apps, and their research direc-
tion is identifying the security/function issues of Android
system and apps. These students work together, and the final
mappings must be agreed by at least two students.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1476
TABLE 6

The APK Id, Name, Number of APK Versions of Each App
APKId APK Name #APK
org.mariotaku.twidere Twidere 12
com.zegoggles.smssync SMS Backup+ 44
org.thoughtcrime.securesms Signal 47
com.totsp.crossword.shortyz Shortyz Crosswords 9
com.fsck.k9 K-9 Mail 80
com.andrewshu.android.reddit rif is fun for Reddit 59
fr.xplod.focal Focal 1
org.geometerplus.zlibrary.ui.android FBReader 35
com.battlelancer.seriesguide SeriesGuide 109
org.wordpress.android WordPress 205
com.kmagic.solitaire Solitaire 1
org.coolreader Cool Reader 7
cgeo.geocaching Cgeo 93
com.joulespersecond.seattlebusbot OneBusAway 66
com.achep.acdisplay AcDisplay 31
de.danoeh.antennapod AntennaPod 11
com.frostwire.android FrostWire 271
com.ichi2.anki AnkiDroid 551

o Fig. 5 shows the procedure of leveraging bug reports to
correlate reviews and code. After reading a function error
related review, the student identifies the bug described in it
and then looks for the bug in the existing bug reports. If we
found that the bug has been fixed, the corresponding code
files modified by the developers are regarded as the code
related to the review.

o Fig. 6 demonstrates the procedure of using release
notes of open-source apps to map reviews to code. When
publishing a new version of app, the developers can write
the release note to tell users the changes developers have
made to the new version of app, including the newly added
features, fixed bugs, and patched vulnerabilities [83]. After
reading a function error related review, the student identi-
fies the bug described in it and then searches the release
notes describing that this bug has been fixed. If one release
note fixing this bug is found, the student compares the code
of this version with the previous version to locate the
changed files and then regards them as the code related to
the function error review.

Finally, the ground truth constructed by using bug
reports contains 8 apps and the ground truth constructed
by using release notes contains 6 apps. Other apps that do
not contain bug reports or release notes are not included.
We do not use the datasets provided by ChangeAdvi-
sor [81] and Where2Change [82] as the ground truth. The
reason is, although these two datasets contain the apps’
source code and the corresponding user reviews used in the
evaluation, they do not provide the mapping between each
function error review and its related source code, which
have been manually verified to evaluate their system

l Bug described 1

in review

Files
A\\\\\\\‘ modified in
bug report

Functlon Error
Related Review

Bug Reports

Fig. 5. Procedure of building ground truth with bug reports.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

p X

Bug described

in review Files
_\\\{ Release Note r\\\.\\\ Source code ||k changed in
this version

Fig. 6. Procedure of building ground truth with release notes.

Function Error
Related Review

performance. Thus, we need to manually create the ground
truth (i.e., mapping between function error reviews and
code) by downloading and checking the bug reports and
release notes.

5.2 Review ldentification Performance

To evaluate the performance of classifying function error
related reviews, we adopt the two datasets and process
them with ReviewSolver. The dataset provided by Ciuru-
melea et al. [25] contains 199 reviews (87 of them are func-
tion error related ones). Another dataset provided by Maale;j
et al. [20], [21] contains 747 reviews (369 of them are func-
tion error related ones). The authors of these two datasets
have added the labels for the user reviews that are (not)
function error reviews. We directly use them as the ground
truth of identifying function error related reviews. More-
over, we do not use them when building up the mapping
between user reviews and code as ground truth since: (1)
The reviews provided by Ciurumelea et al. [25] are derived
from 39 apps. However, the authors do not provide the
APK id of these reviews. Thus, we cannot use them to build
up the mapping between user reviews and code. (2)The
reviews provided by Maalej ef al. [20], [21] are obtained
from 4 iOS apps and 4 Android apps. However, all the 4
Android apps (i.e., 80 apps, PicsArt, Pinterest, Whatsapp)
are closed-source apps. Thus, we cannot obtain their bug
reports or release notes to build up the mapping between
function error reviews and code.

Table 7 shows the result of ReviewSolver. For the data-
set provided by Ciurumelea et al. [25], our system achieves
84.6% precision and 88.5% recall rate for detecting function
error related reviews. For the dataset provided by Maalej
et al. [20], [21], our system achieves 88.4% precision and
66.4% recall rate for detecting function error related
reviews. We manually analyze the cause of false positives/
negatives.

False Positives. The major cause of false positive is that
although some reviews contain function error related words
(e.g., “bug,” “problem”), the objects that user really wanted
to describe are some fixed bugs, small limitations, or bugs
of other apps. For example, “Amazing This app helped me a
lot. Allowed me to see why my apps crashed so I could fix the
bugs”. To remove such false positives, we could analyze the
tense of the review to identify the fixed bugs (e.g., “... has
been fixed”) and check the subject related to the bug (e.g.,
“my apps”).

False Negatives. The major cause of false negative is that
users may describe function errors implicitly. For example,
the review “Slow on tablets In need of a major update. Images not
as crisp or bright as on jjComic Viewer or Perfect Viewer.” does
not contain any function error related words (e.g., “bug,”
“error”), and the user only described that the error makes
the tablet “Slow,” thus ReviewSolver cannot recognize it.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

TABLE 7
Result of Classifying Function Error Related Reviews
Dataset Precision Recall F-1
Ciurumelea et al. [25] 85.4% 87.4% 86.4%
Maalej et al. [20], [21] 88.3% 66.4% 75.8%

We can add the function error related reviews that describe
the error implicitly into the training set to remove such false
negatives.

Answer to RQ1. The experimental result shows that: For
the review dataset provided by Ciurumelea et al. [25],
ReviewSolver can achieve 85.4% precision, 87.4% recall
rate for identifying function error related reviews. For
another review dataset provided by Maalej et al. [20], [21],
ReviewSolver can achieve 88.4% precision, 66.4% recall
rate for identifying function error related reviews.

5.3 Performance of ReviewSolver

We use the mapping from user reviews to code with
ground truth (described in Section 5.1) to evaluate
ReviewSolver and compare it with ChangeAdvi-
sor [13] and Where2Change [14].

Comparison ReviewSolver With ChangeAdvisor and Where2-
Change by Using Bug Reports. The “#Total Map” column of
Table 8 shows the total number of mappings from reviews to
code files with ground truth of bug reports. From the “#RS
Map” and “#CA Map” columns of the Table 8, we can see
that ReviewSolver can identify more mappings than the
state-of-the-art system (i.e., ChangeAdvisor). In total, the
number of mapping identified by ReviewSolver (i.e., 324)
is much more than the number of the mappings found by
ChangeAdvisor (i.e., 102) and Where2Change (.e., 211).
For example, for the Cgeo app, ReviewSolver identifies 56
mappings whereas ChangeAdvisor only finds 13 map-
pings. For the WordPress app, ReviewSolver discovers
74 mappings while ChangeAdvisor only identifies 24 map-
pings and Where2Change finds 43 mappings. This perfor-
mance of Where2Change is better than ChangeAdvisor
since Where2Change extracts topic words from bug reports

TABLE 8
The Number of Mappings That can be Identified by
ReviewSolver and ChangeAdvisor

APK #Error #Total #RS #CA #W2C
Name Reviews Map Map Map Map
Twidere 247 2874 44 1 3
Signal 204 1387 73 15 65
K-9 Mail 159 591 37 20 18
SeriesGuide 221 1545 19 13 56
WordPress 298 3146 74 24 43
Cgeo 179 1147 56 13 12
OneBusAway 146 428 16 12 4
AntennaPod 82 422 5 4 10
Total 1536 11450 324 102 211

The meaning of each column (from 2-6): total number of manually ana-
lyzed function error reviews, the number of mappings identified by using
bug reports (column “#Total Map”), the number of mappings identified by
ReviewSolver (column “#RS Map”), ChangeAdvisor (column “#CA
Map”), and Where2Change (column “#W2C Map”).

1477
TABLE 9
The Number of Mappings That can be Identified by
ReviewSolver and ChangeAdvisor

APK #Error #Total #RS #CA #W2C
Name Reviews Map Map Map Map
K-9 Mail 127 164 11 5 11
SeriesGuide 216 284 17 3 3
WordPress 298 446 15 3 3
Cgeo 179 302 15 3 5
OneBusAway 71 49 6 0 0
AntennaPod 77 94 1 1 3
Total 968 1339 65 15 25

The meaning of each column (from 2-6): total number of manually analyzed
function error reviews, the number of mappings identified by using release
notes (column “#Total Map”), the number of mappings identified by
ReviewSolver (column “#RS Map”), ChangeAdvisor (column “#CA
Map”), and where2Change (column “#W2C Map”).

and then combines them with the topic words of the review
cluster to localize the function error.

Comparison ReviewSolver With ChangeAdvisor and Where2-
Change by Using Release Notes. In Table 9, the “#Total Map”
column shows the total number of mappings from reviews
to code files with ground truth of release notes. From the
“#RS Map” and “#CA Map” columns of the Table 9, we can
see that ReviewSolver can identify more mappings than
the state-of-the-art system (i.e., ChangeAdvisor). In total,
the number of mapping identified by ReviewSolver (e,
65) is four times as many as the number of the mappings
discovered by ChangeAdvisor (i.e., 15). For example, for
the K-9 Mail app, ReviewSolver discovers 11 mappings
whereas ChangeAdvisor only identifies 5 mappings. For
another app WordPress, ReviewSolver finds 15 map-
pings while ChangeAdvisor only identifies 3 mappings.
By comparing the “#RS Map” and “#W2C Map” columns,
we also find ReviewSolver discover more mappings (i.e.,
65) than Where2Change (i.e., 25).

To determine if the results of ChangeAdvisor and
Where2Change can complement the results of the
ReviewSolver or not, by using the ground truth created by
using bug reports and release notes, we measured how
many of the results of ChangeAdvisor and Where2-
Change are also discovered by ReviewSolver. As shown
in Table 10, we can find that the most results of ChangeAd-
visor and Where2Change are not discovered by
ReviewSolver. In other words, both ChangeAdvisor and
Where2Change can complement the results of the
ReviewSolver. For example, for the review “I also don’t
understand why i cannot move emails in trash (deleted in error)
back into my inbox!”. After clustering reviews, ChangeAdvi-
sor extracts four words from this review (“delet,” “email,”
“error,” “move”). Then, it finds the source code MessageView-
Fragment that also contains these four words. Although
ReviewSolver can extract the verb phrase “move emails,” it
cannot identify the classes that implementing this function.

In detail, when checking the mappings of ground truth
created by the using bug reports, we found that, for the 102
mappings discovered by ChangeAdvisor, 84 mappings of
them cannot be found by ReviewSolver (Row 2, Column
“RS N CA”). Only 18 mappings found by ChangeAdvisor

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1478

TABLE 10
Result of Identifying the Distinct Mappings Between Function
Error Reviews and Code Found by ReviewSolver,
ChangeAdvisor, and Where2Change

RSNCA RSNCA RSNCA
Ground Truth(Bug Report) 18 305 84
Ground Truth(Release Note) 2 63 13
RSNW2C RSNW2C RSNW2C
Ground Truth(Bug Report) 13 310 198
Ground Truth(Release Note) 2 63 23

are also found by ReviewSolver. Moreover, for the 211
mappings discovered by Where2Change, 198 of them cannot
be found by ReviewSolver (Row 4, Column “RS N W2C”).
When checking the mappings of ground truth created by
using the release notes, we also find that, for the 15 mappings
found by ChangeAdvisor, 13 of them cannot be found by
ReviewSolver (Row 3, Column “RS N CA”). Only 2 map-
pings found by ChangeAdvisor are also found by
ReviewSolver. Moreover, for the 25 mappings found by
Where2Change, 23 mappings of them cannot be found by
ReviewSolver (Row 6, Column “RS N W2C”).

Answer to RQ2. The experimental result shows that:
Given the same set of function error related reviews, by
using the ReviewSolver can correctly resolve more
reviews than ChangeAdvisor and Where2Change. More-
over, the results of ChangeAdvisor and Where2Change
can complement the results of the ReviewSolver.

5.4 Resolving Function Error Related Reviews

As shown in Table 11, for the 4,743 function error related
reviews discovered by ReviewSolver, 57.9% (i.e., 2745/
4743) of these function error related reviews can be mapped
to code by ReviewSolver. This number is much larger than
that of ChangeAdvisor, which can only map 442 of them to
code (i.e., 9.3%, 442/4743). Moreover, for the 8 apps contain-
ing bug reports, ReviewSolver can map 1061 of the func-
tion error reviews to code while Where2Change only maps
677 of them (i.e., 38.0%, 677/1782). Other 10 apps are not ana-
lyzed by Where2Change since they do not contain any bug
reports. The above result shows that ReviewSolver outper-
forms both ChangeAdvisor and Where2Change in the per-
centage of reviews mapped to code.

Since ReviewSolver uses various context information
to map review to code, for each context information, we
count the number of function error reviews that can be
located by using it for the sake of measuring the effective-
ness of different context information. The result is shown in
Table 12. It shows that, for the 4743 function error reviews,
the context information “General Task” can be used to
resolve 42.1% of them. Moreover, the context information
“App Specific Task” can resolve 28.7% of them (i.e., 1359/
4743): 1203 of them are resolved by using the method names
set by developers and 578 of them resolved by using the
method names predicted by Code2vec [57]. We also find
that the context information “Exception” can only be found
in 4 function error reviews. The reason is few normal users
have technical knowledge of Android apps. They can obtain
the type or detail of exception. Thus, only 4 function error
reviews describe “Exception”. Note that the distribution

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 11
The Number of Negative Reviews Resolved by
ReviewSolver and ChangeAdvisor

APK #Error #RS #CA #W2C
Name Review
1 Twidere 303 191 17 3
2 SMS Backup+ 519 324 8 -
3 Signal 214 154 25 121
4 Shortyz Crosswords 367 189 34 -
5 K-9 Mail 319 216 22 156
6 rif is fun for Reddit 229 107 12 -
7 Focal 435 266 12 -
8 FBReader 158 92 17 -
9 SeriesGuide 320 126 11 63
10 WordPress 235 189 32 150
11 Solitaire 122 58 12 -
12 Cool Reader 293 170 17 -
13 Cgeo 127 76 19 55
14 OneBusAway 178 75 132 920
15 AcDisplay 341 178 39 -
16 AntennaPod 86 34 7 39
17 FrostWire 320 174 7 -
18 AnkiDroid 177 126 19 -
Total 4743 2745 442 677

The meaning of the columns (3-6): the number of function error reviews (col-
umn “#Error Review”), the number of function error reviews resolved by
ReviewSolver (column “#RS”), ChangeAdvisor (column “#CA”), and
Where2Change (column “#W2C”).

shown in Table 12 may not be the same as that in Table 1
since some reviews contain multiple kinds of context infor-
mation and we only consider the primary context informa-
tion (i.e., the most important information that can help us
locate the error) when creating Table 1. For example, for the
review “After updating the app, I cannot connect server,” we
regard “connect server” as the primary context information.

To check the precision of the mapping from reviews to
code identified by ReviewSolver, we manually check 50
mappings for each app. The result is shown in the third
and fourth columns of Table 13, and we can see that
ReviewSolver can achieve 70.0% precision.

Cause of False Mappings. The major cause of the false map-
pings is that some reviews do not contain context informa-
tion, but we still map them in code. For instance, consider
the review “This app has started crashing more than a 737 air-
plane”. This review does not describe when the crash
appears. But our system still extracts the phrase “started

TABLE 12
Number of Function Error Reviews That Can Be Mapped to
Code by ReviewSolver Through Different Context Information

Context #Function Error Percentage
General Task 1998 42.1%
App Specific Task 1359 28.7%
API/URI/intent 852 18.0%
Updating App 431 91%
Registering Account 168 3.5%
Error Message 128 2.7%
GUI 82 1.7%
Opening App 54 1.1%
Exception 4 0.08%

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

TABLE 13
Correctness of the Mappings From Reviews
to Code Found by ReviewSolver

1479

TABLE 15
Average Time Consumption of Using Different Context
Information to Localize the Function Error

ReviewSolver

APK Context Average Time
Name #Correct/Check Precision (seconds/review)
1 Twidere 34/50 68.0% General Task 5.0
2 SMS Backup+ 40/50 80.0% App Specific Task 122
3 Signal 33/50 66.0% API/URI/intent 93.4
4 Shortyz Crosswords 22/38 57.9% Updating App 7.3%107°
5 K-9 Mail 40/50 80.0% Registering Account 6.8 1074
6 rif is fun for Reddit 32/50 64.0% Error Message 1.7%107!
7 Focal 40/50 80.0% GUI 3.9% 1073
8 FBReader 19/50 38.0% Opening App 7.3%107*
9 SeriesGuide 31/50 62.0% Exception 2.7%107*
10 WordPress 40/50 80.0%
11 Solitaire 38/50 76.0%
% Cooélg{:(a)a der Z(S)jgg gggzz To show that the chances of over.ﬁ'tting is very low in
14 OneBusAway 32/39 82.1% ReviewSolver, we conduct an additional experiment by
15 AcDisplay 35/50 70.0% using 10 new apps. For each app, we use ReviewSolver
16 AntennaPod 16/29 55.2% and ChangeAdvisor to localize the function errors men-
%57; groks.g‘/ir% gg; gg ;égzo tioned in user reviews. The final result is shown in Table 14.
nkiDroi 0% : : : (e
Total 599/856 70.0% For the 523 function error related reviews identified by

crashing” and then maps it to classes. To remove such false
mappings, we need to build up a machine learning classifier
to determine if the review contains context information or
not. Moreover, some false mappings are generated since
ReviewSolver cannot correctly identify the function error
review. For example, consider the review “A nice and clean
lockscreen with a cool unlock animation. Only problem 1 have
with this is that there is no PIN feature”. Although this review
mentions “problem,” it is intended to ask the developers to
add the “PIN feature”. But the machine learning classifier of
ReviewSolver incorrectly classifies it as a function error
review and then generate useless mappings between this
review and code. To remove such false mappings, we need
to increase the dataset used for training the machine learn-
ing classifier of identifying function error reviews.

TABLE 14
Additional Dataset: The Number of Function Error Reviews
Resolved by ReviewSolver and ChangeAdvisor

APK #Error #RS #CA
Name Review
19 Password Store 12 4 1
20 IRCCloud 82 42 7
21 Quasseldroid IRC 22 14 0
22 primitive ftpd 15 7 10
23 Seafile 67 49 16
24 ML Manager 13 4 1
25 CycleStreets 79 43 11
26 Hangar 65 26 6
27 qBittorrent 52 30 39
28 MozStumbler 55 29 6
Total 462 248 97

The meaning of the columns (3-5): the number of function error reviews (col-
umn “#Error Review”), the number of function error reviews resolved by
ReviewSolver (column “#RS”), ChangeAdvisor (column “#CA”).

ReviewSolver, ReviewSolver can localize 248 of them
in code while ChangeAdvisor only localizes 97 of them. It
also shows that ReviewSolver outperforms ChangeAd-
visor in the percentage of localizing function error related
reviews. Note, since we cannot obtain the bug reports data-
set of these 10 new apps, we do not process them with
Where2Change.

Answer to RQ3. The experimental result shows that:
ReviewSolver can resolve 57.9% function error related
reviews.

6 DiISCUSSION

In this section, we discuss running time, the realism of
applicability, usability, and limitation of ReviewSolver.

6.1 Time Consumption

For each function error review, we measured the average
time consumption of using different types of context infor-
mation to localize the function error. The result is shown in
Table 15.

Localizing the “API/URI/intent” related error has the
largest time overhead. The reason is ReviewSolver will
compare each phrase extracted from the function error
review with the descriptions of 26,030 Android framework
APIs, which is a time-consuming procedure. In the future, to
speed up this procedure, we will select the most commonly
invoked Android framework APIs for comparison (i.e.,
ignore the rarely called APIs). Moreover, two kinds of con-
text information (i.e., “App Specific Task” and “General
Task”) also consume more than one second for each review.
To localize the “App Specific Task” related error, the average
time overhead reaches 12.2 seconds per review. This is
because ReviewSolver will compare each phrase of the
review with all the method names extracted from the app. To
speed up this procedure, we will filter some method names
that do not describe tasks implemented in code (e.g., “test”)
in future. To localize the “General Task” related errors, the
average time overhead is about 5.0 seconds per review since

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1480

ReviewSolver requires comparing each phrase of the
review with all the Q&As in Stack Overflow. We can also
select the most popular Q&As in Stack Overflow to reduce
the time overhead. For the remaining types of context infor-
mation, the average time overhead is less than 1.0 s for each
review, which means each function error review can be proc-
essed quickly.

We also measured the time overhead of running
ChangeAdvisor and Where2Change, the final result
shows that ChangeAdvisor consumes about 5.5 seconds
per review and Where2Change consumes about 2.1 sec-
onds. These two systems are faster than ReviewSolver
since their analysis are based on review clusters. They do not
compare each review with the source code and they only
extract words from source code (i.e., they do not extract pre-
cise context information from source code). Where2Change
also implemented multithread (i.e., process the reviews of
multiple apps at the same time) to reduce time overhead.

6.2 Scalability

The scalability of ReviewSolver is better than existing
tools (i.e., ChangeAdvisor and Where2Change). When
applying ChangeAdvisor and Where2Change to process
a large number of apps, two major challenges should be
solved. First, since these two systems require source code of
apps, if the analyzed apps are closed-source apps, we must
contact the developers of the apps to obtain the source code.
Second, these two systems extract topic words from review
clusters, thus their performance will be affected by the result
of review clustering. If the new apps only include a small
number of function error reviews, they could not divide
these reviews into clusters and it will be difficult to extract
topic words from them. Moreover, Where2Change also
requires using the bug reports as the input. If the new apps
do not have any bug reports, Where2Change cannot lever-
age bug reports to precisely localize the function errors of
user reviews. As ReviewSolver only uses the APK files
and user reviews as input, it can also process the new closed-
source apps. Moreover, ReviewSolver identifies and pro-
cesses the function error reviews one by one, thus it will not
be affected by the number of function error reviews and the
result of review clustering. Moreover, when applying RIS-
ING to process a large number of new apps, it also needs to
solve the challenges of obtaining source code, review cluster-
ing, and commit messages. But ReviewSolver do not have
such issues.

6.3 Applicability

To measure the realism of applicability of ReviewSolver,
we discuss whether ReviewSolver can be used in localizing
function errors of ecosystems other than Android. Although
we mainly describe how to localize the function error reviews
of Android apps in this paper, we can easily customize
ReviewSolver to process other ecosystems (e.g., iOS apps
installed in iPhone) through modifying the “Static Analysis”
module (Section 3.3). This is because other ecosystems require
using different static analysis tools to perform static analysis
and then extract context information from bytecode. Other
two major components of ReviewSolver (ie., “Review Ana-
lysis” in Section 3.2 and “Localizing Function Errors” in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 16
Result of Localizing the Function Error Reviews of iOS Apps
Through Extracting Three Types of Context Information

From the Apps

iOS App # Error Reviews #RS Map
Nextcloud 80 20
WordPress 403 157
Signal 304 123
Wire 156 30
DuckDuckGo 178 36
Total 1121 366

Section 4) do not need to be modified. The reason is users use
similar natural language sentences to describe the function
errors in user reviews. We can follow the same procedure to
correlate the context information extracted from reviews and
code.

To show that ReviewSolver can also be applied in
processing other ecosystems, we select 5 iOS apps as the
example. For the context information contained in function
error reviews in Table 1, we use static analysis tools to
extract them from iOS apps. Different from Android apps
that are developed through Java and many tools can be
used to perform static analysis (e.g., Soot [84], Flow-
droid [58], Apktool [85]), developers usually use Swift and
Objective-C to develop iOS apps. Performing static analysis
on iOS apps is more challenging and few tools are avail-
able [86], [87]. For instance, recent research on iOS apps
only extracts the invoked framework APIs [88]. Finally, we
select Class-dump [89] to extract three types of context
information from the iOS apps: (1)“App Specific Task”. By
using the output of Class-dump [89], we extract the class
names and the method names defined by developers. Then,
we can use them to localize the function errors that
appeared during performing app specific tasks (Sec-
tion 4.1.1). (2)“GUI”". For the classes implementing the call-
backs of GUI, we extract all the object names whose types
are GUI components (e.g., UIButton [90]). We use the object
names to match the Ul components mentioned in user
reviews (Section 4.1.2). (3)“API/URI/intent”. To localize
the function errors that appeared when invoking Frame-
work APIs (Section 4.2.1), for each method defined by
developers, we parse the result of Class-dump to extract the
invoked framework APIs. To precisely identify these frame-
work APIs, we write a crawler and obtain 6,086 iOS frame-
work APIs from the official website of iOS [91].

Finally, based on these three types of extracted context
information, for the 1,121 function error reviews of 5 iOS
apps identified by ReviewSolver, we can localize 366 of
them (i.e., 366/1121, 32.6%) to at least one class defined by
developers (Table 16). This result demonstrates that
ReviewSolver can be easily customized to localize the
function errors of other ecosystems. Due to the time limit,
we do not extract other types of context information from
iOS apps. In future, we will extract them to improve the per-
formance of processing user reviews of iOS apps.

6.4 Usability
In this section, we compare the usability of ReviewSolver
with existing systems [13], [14], [15].

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

When localizing the function error related user reviews
of Android apps, ReviewSolver only requires using the
APK files downloaded from the app markets as the input. It
means that ReviewSolver can handle both open-source
and closed-source apps. ChangeAdvisor [13], Where2-
Change [14], and RISING [15] focus on open-source apps
and they will compare the words extracted from user
reviews and source code to localize the error. Moreover,
Where2Change integrates bug reports and RISING uses
commit messages to achieve better performance. From this
point, ReviewSolver can handle more apps when com-
pared with existing systems [13], [14], [15].

Compared with existing systems [13], [14], when running
ReviewSolver, the users need to wait a longer time before
obtaining the final result. The main reason is, apart from the
apps’ bytecode, ReviewSolver also use the Q&A of Stack
Overflow, official API documents, and class/method names
of the apps to localize the function error. We will design
some mechanisms to decrease the time overhead of
ReviewSolver in future.

6.5 Findings
Other researchers can benefit from the following findings of
this paper:

(1) Context information contained in function error related
reviews. Previous researchers [22], [49] only summarize differ-
ent types of topics described in user reviews, including the
bug/function error related reviews. None of them performs
fine-grained analysis on function error related reviews and
evaluates different types of context information described in
them. In this paper, we are the first to summarize various
types of context information contained in function error
related user reviews. Other researchers can use the context
information summarized in this paper to design some new
systems (e.g., recommend code changes for developers).

(2) New framework design for localizing function errors of
reviews. We design a novel framework that combines NLP
and program analysis to correlate the reviews and bytecode
through their semantic meanings and then localize the func-
tion errors. Other researchers can use this framework design
when developing other similar systems. Compared with
other existing systems, our framework has two significant
differences: (a) Although a few other studies also localize the
function errors in user reviews [13], [14], [15], they do not
extract precise semantic information from the user reviews
and apps’ bytecode. (b) We observe that it is possible to local-
ize the function errors in user reviews without source code.
Previous papers rely on source code of apps [13], [14], [15].

(3) New techniques for bridging the gap between the text and
code. We design a series of methods to bridge the gap
between natural language and bytecode. For each type of
context information contained in user reviews, we design a
specified method to localize it according to the semantic
information extracted from apps’ bytecode. Other research-
ers can employ these methods to correlate other kinds of
software artefacts (e.g., bug reports, commit messages,
description) with the corresponding code.

6.6 Limitation of ReviewSolver
Some factors may affect the performance of ReviewSolver.
When identifying the function error related reviews, the

1481

training dataset does not cover all kinds of reviews that
describe the error implicitly (e.g., “... is hard to load”). To
overcome this limitation, we will try to identify them
through deep learning methods [92], [93]. When mapping
function error related reviews to code, ReviewSolver can-
not filter out all useless phrases that can be mapped to code
mistakenly. To address this issue, we will try using machine
learning classifier to identify useless phrases. Some function
error related reviews cannot be located since they are related
to the compatibility issues of specified device. We can use
information retrieval technique to recognize the types of
devices and report them to developer automatically.

When measuring the performance of localizing function
error reviews, the ground truth (i.e., mapping between
function error reviews and the corresponding code) cannot
be obtained from the internet. Currently, we tried to manu-
ally construct the ground truth by using two kinds of docu-
ments (i.e., bug reports and release notes). In the future, we
will use other methods (e.g., using the commit messages
[15], [94]) to construct the ground truth.

7 RELATED WORK

7.1 Review Analysis

A number of studies have been conducted on the user
reviews of app store [2]. However, the majority of them just
analyze user reviews without correlating them with apps’
code. Chen et al. [95] combine static features (e.g., app
name, category) and dynamic features (e.g., current rate
count, description) with comment features (e.g., user rate,
comment title) to predict the popularity of apps. Khalid
et al. manually analyze user reviews and uncover 12 types
of user complaints [22]. To identify correlations between
error-sensitive permissions and error-related reviews,
Gomez et al. [96] leverage LDA and J48 to process the per-
missions and reviews.

Some other studies extract app features from reviews.
Tacob et al. [7] define a set of linguistic rules to match feature
request related reviews, and then use LDA to identify com-
mon topics in these reviews. AR-Miner [12] employs machine
learning technique to filter out non-informative reviews and
then performs clustering on the remaining reviews to provide
an intuitive summary for developers. Ciurumelea et al. manu-
ally analyze user reviews and define a high level taxonomy
(e.g., compatibility, usage) and low level taxonomy (e.g.,
device, UD) [25] and apply machine learning techniques to
classify the reviews. AutoReb [97] combines machine learning
and crowdsourcing technique to identify four kinds of pri-
vacy related reviews, including spamming, financial issue,
over-privileged permission, and data leakage. To identify the
part of the app loved by users, SUR-Miner [6] extracts the
semantic dependence relation between words and utilizes
clustering algorithms to identify users” opinion towards cor-
responding aspect. In [20], Walid Maalej et al. combine text
classification, NLP, and sentiment analysis to classify reviews
into four categories. To generate summaries of users feedback,
SUREF [98] classifies review sentences into different categories
by utilizing the intentions and topics of the reviews. Pani-
chella et al. [99] exploit machine learning and deep learning
for automatic classification of requirements from elicitation
sessions and user feedback.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

1482

ChangeAdvisor [13] and Where2Change [14] are most
closely related study since they also analyze code. Change-
Advisor [13] employs the HDP algorithm [100] to extract
topic words from the clusters of function error related
reviews. Then it calculates the asymmetric dice similarity
coefficient [101] between these topic words and the words
extracted from source code file. If the result reaches a
threshold, it recommends the developer to check the corre-
sponding code file. The major differences between our sys-
tem and ChangeAdvisor include: 1) When analyzing the
reviews, ChangeAdvisor does not consider the part-of-
speech tags of each word, which will cause false mappings.
ReviewSolver conduct syntactic analysis on each review
to avoid such problem. 2) We employ static analysis to
extract the starting activity, requested permissions, APIs/
URIs/intents, error messages, class/method names, visible
information and invisible information of GUI from APK.
We do not simply split the code into distinct words like
[13], [25] to avoid including many useless words, which
will affect the correctness of mapping reviews to code. 3)
When mapping the review to code, ChangeAdvisor [13]
checks the number of words shared by review and code file.
It does not consider the synonyms, thus leading to many
false negatives. We leverage the word embedding method
to measure semantic similarity between the two phrases,
and our method can find similar phrases even when some
words are different. Where2Change [14] employs bug
reports to improve the performance of mapping reviews to
code. After clustering user reviews to clusters, Where2-
Change map review clusters to bug reports by using
Word2vec. Then, Where2Change combines the topic words
of review clusters with the words contained in bug reports.
The resultant enriched text is used to identify the source
code classes that should be changed. Similar to ChangeAd-
visor, Where2Change also fails to consider the part-of-
speech tags of each word in the reviews and the context
information contained in code, which may cause false posi-
tives and false negatives.

RISING [15] adopts existing system ARDOC [102] to
transform user reviews into individual sentences and then
identify informative sentences. Then, RISING groups the
informative sentences into fine-grained clusters. Finally, to
localize the file changes, it computes the similarity between
review clusters and the words extracted from source code
and commit messages. The main differences between our
system and RISING include: 1) RISING extracts file paths,
class summary, method summary, method name, and field
declaration from source code. Similar to ChangeAdvisor,
it does not extract the starting activity, requested permis-
sions, APIs/URIs/intents, error messages, class/method
names, visible information and invisible information of
GULI Thus, its correctness will be affected when mapping
reviews to code. Our system performs static analysis to
extract these different kinds of information from APK file.
2) RISING does not analyze the part-of-speech tag of each
word in the review. For the same word (e.g., “contact”), it
cannot determine if it is a verb (e.g., “contact us”) or a noun
(e.g., “use contact information”), which may cause false pos-
itives when mapping the review to code. Our system avoids
this problem by extracting verb phrases and noun phrases
from the parse tree and typed dependency of the sentence.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

3) When mapping the user reviews to app code, RISING
includes the commit messages to assist file localization.
However, only open-source apps have the commit messages.
The performance of RISING will be affected when process-
ing the closed-source apps, which only provide APK file.
Our system does not rely on source code or commit mes-
sages. The performance will not be affected when processing
the closed-source apps. In summary, when applying RIS-
ING to process a large number of new apps, it also needs to
solve the challenges of obtaining source code, review cluster-
ing, and commit messages. But ReviewSolver do not have
such issues.

To localize the crashes in user reviews, Becloma [103]
adopts MONKEY [104] /SAPIENZ [105] to run apps dynam-
ically and trigger crashes. Then, it calculates the similarity
between the words in stack traces and the words in reviews.
The main limitation is that they can only localize the func-
tion errors triggered through dynamic analysis. Otherwise,
the function errors cannot be localized. Our system does not
require dynamically run the app to trigger the function
error (i.e., only static analysis is required).

7.2 Code Analysis

Many static analysis systems have been proposed to analyze
the APK file of mobile apps [106]. EdgeMiner [107] conducts
static analysis on Android framework to identify callbacks
and their corresponding registration functions. Since devel-
opers can use obfuscation technique to hide the class,
method, variable names, DeGuard [108] proposes to build
up probabilistic model for third-party libraries by analyzing
non-obfuscated apps. Then it employs the probabilistic
model to recover the obfuscated class, method, and variable
names of new APKs. If the developer use packing services
to hide the dex files, DexHunter [109] and PackerGrind [110]
can be used to recover the original dex files. FlowDroid [58]
performs static taint analysis to identify the source to sink
path. To analyze the inter component communication of
apps, IccTA leverages IC3 (an advanced string analysis tool)
to discover the ICC links and create dummy method for
them [55]. To detect piggybacked apps, Fan et al. propose
using sensitive subgraphs to profile the app and extract fea-
tures from them [111], [112]. Xue et al. [113] use dynamic
analysis to identify the factors that will affect the network
measurement result of mobile apps.

Some studies use static analysis to analyze the GUI of
apps. To generate precise privacy policies, AutoPPG [114],
[115] leverages Vulhunter [54] to analyze the callbacks of
GUI and the conditions of sensitive behaviors. To find the
contradiction between user interface and code, AsDroid [116]
compares the behavior found by static analysis with the
behavior identified from Ul to find contradiction. To identify
the sensitive user input, UIPicker [117] determines sensitive
input fields by using a supervised learning classifier that is
based on the features extracted from the texts of the Ul
elements.

7.3 Linking Document to Code

Information retrieval (IR) [101] technique has been used to
link document to code. The document is used as a query
and the code is regarded as document collection. IR uses

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

some models (e.g., vector space model, probabilistic model) to
calculate the relevance between the input document and code
files. Then it ranks the relevance of code files. BLUIR [118]
extracts words from the class names, method name, and vari-
able names of source code and then it employs VSM to link
bug reports to code. TRASE [119] builds up probabilistic topic
model for software artifacts. This model can be used to clas-
sify artifacts based on semantic meaning and visualize the
software with topic words. CRISTAL [4] compares crowd
reviews with code changes to measure the extent to which the
crowd request have been accommodated. The system also
monitors changes of user ratings to measure user reactions.
To discover the inconsistency between app description and
permissions, TAPVerifier [120] uses NLP to analyze the pri-
vacy policy and uses static analysis to analyze the code. To
locate feature related code, SNIAFL [121] first transforms the
feature description and method/variable names in code into
index terms. Then it uses vector space model to calculate the
cosine similarity between the feature description and meth-
ods in code. PPChecker [122] compares the privacy policy
with APK file to detect three kinds of problems contained in
privacy policy. To enrich the content of new bug reports and
facilitate software maintenance, Zhang et al. [123] propose to
utilize sentence ranking to select proper sentences from his-
torical bug reports.

8 CONCLUSION

User reviews of mobile apps can help developers discover
the function errors uncaught by app testing. Manually proc-
essing reviews is time-consuming and error-prone whereas
the state-of-the-art automated approaches may lead to many
false positives and false negatives. In this paper, we propose
and develop a novel tool named ReviewSolver to auto-
matically localize the function error by correlating the con-
text information extracted from reviews and the bytecode.
The experimental result shows that ReviewSolver can
identify the function error reviews with a high precision and
recall rate. Moreover, it locates much more function error
related code than the state-of-the-art tools ChangeAdvisor
and Where2Change.

ACKNOWLEDGMENT

The authors thank the reviewers for their quality reviews
and suggestions.

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey
of app store analysis for software engineering,” IEEE Trans.
Softw. Eng., vol. 43, no. 9, pp. 817-847, Sep. 2017.

2] N. Genc-Nayebi and A. Abran, “A systematic literature review:
Opinion mining studies from mobile app store user reviews,” J.
Syst. Softw., vol. 125, pp. 207-219, 2017.

[3] D. Pagano and W. Maalej, “User feedback in the appstore: An
empirical study,” in Proc. 21st IEEE Int. Requirements Eng. Conf.,
2013, pp. 125-134.

[4] F. Palomba et al., “User reviews matter! Tracking crowdsourced
reviews to support evolution of successful apps,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evol., 2015, pp. 291-300.

[5] B. Fu, J. Lin, L. Li, C. Faloutsos,]J. Hong, and N. Sadeh, “Why
people hate your app: Making sense of user feedback in a mobile
app store,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2013, pp. 1276-1284.

(6]

[7]

[8]

1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

1483

X. Gu and S. Kim, “What parts of your apps are loved by users?,”
in Proc. 30th IEEE/JACM Int. Conf. Autom. Softw. Eng., 2015,
pp. 760-770.

C.IJacob and R. Harrison, “Retrieving and analyzing mobile apps
feature requests from online reviews,” in Proc. 10th Work. Conf.
Mining Softw. Repositories, 2013, pp. 41-44.

L. V. G. Carreno and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” in Proc. 35th
Int. Conf. Softw. Eng., 2013, pp. 582-591.

E. Guzman and W. Maalej, “How do users like this feature? A
fine grained sentiment analysis of app reviews,” in Proc. IEEE
22nd Int. Requirements Eng. Conf., 2014, pp. 153-162.

P.M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining
user opinions in mobile app reviews: A keyword-based
approach (t),” in Proc. 30th IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2015, pp. 749-759.

D. H. Park, M. Liu, C. Zhai, and H. Wang, “Leveraging user
reviews to improve accuracy for mobile app retrieval,” in Proc.
38th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2015,
pp. 533-542.

N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Min-
ing informative reviews for developers from mobile app market-
place,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 767-778.

F. Palomba et al, “Recommending and localizing change
requests for mobile apps based on user reviews,” in Proc. IEEE/
ACM 39th Int. Conf. Softw. Eng., 2017, pp. 106-117.

T. Zhang, J. Chen, X. Zhan, X. Luo, D. Lo, and H. Jiang,
“Where2Change: Change request localization for app reviews,”
IEEE Trans. Softw. Eng., vol. 47, no. 11, pp. 2590-2616, Nov. 2021.

Y. Zhou, Y. Su, T. Chen, Z. Huang, H. C. Gall, and S. Panichella,
“User review-based change file localization for mobile applications,”
IEEE Trans. Softw. Eng., vol. 47, no. 12, pp. 2755-2770, Dec. 2021.

G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C.
Gall, “Exploring the integration of user feedback in automated
testing of Android applications,” in Proc. IEEE 25th Int. Conf.
Softw. Anal. Evol. Reeng., 2018, pp. 72-83.

DAVID CURRY, “Android statistics (2021),” 2021. [Online]. Avail-
able: https: //www.businessofapps.com/data/android-statistics/

App Brain, “Number of Android apps on Google Play,” 2021.
[Online]. Available: https:/ /www.appbrain.com/stats/number-
of-android-apps

L. Yu, J. Chen, H. Zhou, X. Luo, and K. Liu, “Localizing function
errors in mobile apps with user reviews,” in Proc. 48th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2018, pp. 418-429.

W. Maalej, Z. Kurtanovi¢, H. Nabil, and C. Stanik, “On the auto-
matic classification of app reviews,” Requirements Eng., vol. 21,
pp- 311-331, 2016.

W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? On automatically classifying app reviews,” in Proc. IEEE
23rd Int. Requirements Eng. Conf., 2015, pp. 116-125.

H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?,” IEEE Softw., vol. 32, no. 3,
pp- 70-77, May/Jun. 2015.

Stack overflow, 2019. [Online]. Available: https:/ /stackoverflow.
com/

CSDN, 2019. [Online]. Available: https://www.csdn.net/

A. Ciurumelea, A. Schaufelbiihl, S. Panichella, and H. Gall,
“Analyzing reviews and code of mobile apps for better release
planning,” in Proc. IEEE 24th Int. Conf. Softw. Anal. Evol. Reeng.,
2017, pp. 91-102.

S. Sarif, “Link inside webpage always return “404 not found”
error if opened from webview ~Android ~Java,” 2020. [Online].
Available: https:/ /shorturl.at/ mJXYZ

weakwire, “How can I check from Android webview if a page is
a ”404 page not found”?,” 2020. [Online]. Available: https://
shorturl.at/mtxMR

Android Developers, “Socket,” 2020. [Online]. Available: https://
shorturl.at/djsJO

S. Bird, E. Loper, and E. Klein, “Natural language toolkit,” 2017.
[Online]. Available: http:/ /www.nltk.org/

M. Gilleland, “Levenshtein distance,” 2017. [Online]. Available:
https://goo.gl/TVA9Ga

M.-C. De Marneffe et al., “Generating typed dependency parses
from phrase structure parses,” in Proc. 5th Int. Conf. Lang. Resour.
Ewval., 2006, pp. 449-454.

M.-C. De Marneffe and C. D. Manning, “Stanford typed depen-
dencies manual,” Stanford NLP Group, 2008.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

https://www.businessofapps.com/data/android-statistics/
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://stackoverflow.com/
https://stackoverflow.com/
https://www.csdn.net/
https://shorturl.at/mJXYZ
https://shorturl.at/mtxMR
https://shorturl.at/mtxMR
https://shorturl.at/djsJO
https://shorturl.at/djsJO
http://www.nltk.org/
https://goo.gl/TVA9Ga

1484

[33]

[34]

[35]
[36]
[371

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]
[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

W.B. Cavnar et al., “N-gram-based text categorization,” in Proc. 3rd
Annu. Symp. Document Anal. Inform. Retrieval, 1994.

Z. Wei, D. Miao, J.-H. Chauchat, R. Zhao, and W. Li, “N-grams
based feature selection and text representation for Chinese text
classification,” Int.]. Comput. Intell. Syst., vol. 2, pp. 365-374, 2009.
S. N. Group, “TF-IDF weighting,” 2009. [Online]. Available:
https:/ /goo.gl/RtWHVc

A. M. Text Mining, “What are n-grams?,” 2017. [Online]. Avail-
able: https:/ /goo.gl/bwAHtp

J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted
regression trees,” J. Animal Ecol., vol. 77, pp. 802-813, 2008.

B. Sharma, “What are the advantages/disadvantages of using
gradient boosting over random forests?,” 2015. [Online]. Avail-
able: https:/ /goo.gl/N6y2Kw

B. Liu, Sentiment Analysis and Opinion Mining. San Rafael, CA,
USA: Morgan & Claypool, 2012.

R. K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining
and sentiment analysis,” in Proc. 3rd Int. Conf. Comput. Sustain.
Global Develop., 2016, pp. 452—455.

R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons:
On sentiment analysis tools for software engineering research,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2015, pp. 531-535.

Y. Z. Hung, “Python 3 wrapper for sentistrength,” 2021. [Online].
Available: https:/ / github.com /zhunhung /Python-SentiStrength
Sentistrength, 2021. [Online]. Available: http://sentistrength.
wlv.ac.uk/

D. Devarajan, “Retirement of AlchemyAPI service,” 2017. [Online].
Available: https://www.ibm.com/cloud/blog/announcements/
bye-bye-alchemyapi

NLP Stanford Group, “Stanford CoreNLP,” 2020. [Online].
Available: https:/ / github.com/stanfordnlp /CoreNLP

Python 3 wrapper for sentistrength, 2021. [Online]. Available:
http:/ /text-processing.com/docs/sentiment.html

G. Dnyanoba, “Adversative coordinating conjunctions,” 2019.
[Online]. Available: http://www.dhgutte.com/adversative-
coordinating-conjunction/

A. Singh, “Conjunction,” 2018. [Online]. Available: https://
shorturl.at/bdEU7

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Can-
fora, and H. C. Gall, “How can i improve my app? Classifying
user reviews for software maintenance and evolution,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., 2015, pp. 281-290.
F-Droid Limited and Contributors, “F-droid,” 2020. [Online].
Available: https:/ /f-droid.org/

GitHub, Inc., “Github,” 2020. [Online]. Available: https://
github.com/

apkmonk.com, “APKMonk: One stop for all Android apps,”
2020. [Online]. Available: https://www.apkmonk.com/
APKPure.com, “Apkpure,” 2020. [Online]. Available: https://
apkpure.com/

C. Qian, X. Luo, Y. Le, and G. Gu, “VulHunter: Toward discover-
ing vulnerabilities in Android applications,” IEEE Micro, vol. 35,
no. 1, pp. 44-53, Jan./Feb. 2015.

L. Li et al., “IccTA: Detecting inter-component privacy leaks in
Android apps,” in Proc. IEEE/ACM 37th Int. Conf. Softw. Eng.,
2015, pp. 280-291.

guardsquare, “ProGuard: Open source optimizer for Java and
kotlin,” 2020. [Online]. Available: https://www.guardsquare.
com/en/products/proguard

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec:
Learning distributed representations of code,” Proc. ACM Pro-
gram. Lang., vol. 3, 2019, Art. no. 40.

S. Arzt et al., “FlowDroid: Precise context, flow, field, object-sen-
sitive and lifecycle-aware taint analysis for Android apps,” ACM
SIGPLAN Notices, vol. 49, pp. 259-269, 2014.

K. W.Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyz-
ing the Android permission specification,” in Proc. ACM Conf.
Comput. Commun. Secur., 2012, pp. 217-228.

stackoverflow, “Best practice for displaying error messages,”
2013. [Online]. Available: https://goo.gl/odr84X

P. W. McBurney and C. McMillan, “Automatic source code sum-
marization of context for Java methods,” IEEE Trans. Softw. Eng.,
vol. 42, no. 2, pp. 103-119, Feb. 2016.

A. Continella et al., “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis,” in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2017.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[771

[78]
[791

[80]

[81]
[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Java 14 m mod-
el,” 2020. [Online]. Available: https://s3.amazonaws.com/
code2vec/model/javal4m_model.tar.gz

D. Yan, “GATOR: Program analysis toolkit for Android,”
2020. [Online]. Available: http://web.cse.ohio-state.edu/presto/
software/ gator/

A. Rountev and D. Yan, “Static reference analysis for GUI objects
in android software,” in Proc. Annu. IEEEJACM Int. Symp. Code
Gener. Optim., 2014, pp. 143-153.

ribot.co.uk, “Project guidelines,” 2020. [Online]. Available:
https://github.com/ribot/android-guidelines /blob/master/
project_and _code_guidelines.md

F. Ahmed, “Android naming convention,” 2020. [Online]. Avail-
able: https:/ /stackoverflow.com/questions/12870537 /android-
naming-convention /34428819

Y. Goldberg and O. Levy, “word2vec explained: Deriving miko-
lov et al’s negative-sampling word-embedding method,”
2014, arXiv:1402.3722.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013, arXiv:1301.3781.

T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol.,
2013, pp. 746-751.

Google Code, “word2vec,” 2017. [Online]. Available: https://
goo.gl/NBJgkl

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“AutoCog: Measuring the description-to-permission fidelity in
Android applications,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2014, pp. 1354-1365.

A. Di Sorbo, C. A. Visaggio, M. Di Penta, G. Canfora, and S. Pani-
chella, “An NLP-based tool for software artifacts analysis,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2021, pp. 569-573.
L. Yu, X. Luo, C. Qian, and S. Wang, “Revisiting the description-
to-behavior fidelity in Android applications,” in Proc. IEEE 23rd
Int. Conf. Softw. Anal. Evol. Reeng., 2016, pp. 415-426.
Android developers: Manifest.permission,” 2017.
Available: https://goo.gl/vWolU

Android developer: Common intents,” 2017. [Online]. Available:
https:/ /goo.gl/gHvIsF

K. S. Ashutosh, “Top 10 sites to ask all your programming ques-
tions,” 2017. [Online]. Available: https://www.hongkiat.com/
blog/programming-questions-websites /

Stack Exchange Data Dump, “stackexchange,” 2020. [Online].
Available: https:/ /archive.org/details /stackexchange

C. Thunes, “Javalang 0.13.0,” 2020. https://pypi.org/project/
javalang/

A.Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for map-
ping features to code based on static and dynamic analysis,” in
Proc. 16th IEEE Int. Conf. Prog. Comprehension, 2008, pp. 236-241.
Homepage for the changeadvisor project, 2021. [Online]. Avail-
able: https:/ /sites.google.com/site/changeadvisormobile/
Repository for where2change, 2021. [Online]. Available: https://
github.com/Jiachi-Chen/ReviewBugLocalization

Amy Nordrum, “The strange art of writing app release notes,”
2017. [Online]. Available: shorturl.at/qrPX2

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot-A Java bytecode optimization framework,” in
Proc. Conf. Centre Adv. Stud. Collaborative Res., 1999, Art. no. 13.
iBotPeaches, “A tool for reverse engineering Android apk fil-
es,” 2022. [Online]. Available: https://github.com/iBotPeaches/
Apktool

J. Damian, “Basic IOS mobile app reverse engineering,” 2021.
[Online]. Available: https://www.nowsecure.com/blog/2021/
09/08/basics-of-reverse-engineering-ios-mobile-apps/
cpholguera, “IOS tampering and reverse engineering,” 2022.
[Online]. Available: https://github.com/OWASP/owasp-mstg/
blob/master/Document/0x06c-Reverse-Engineering-and-
Tampering.md

S. Zimmeck, R. Goldstein, and D. Baraka, “PrivacyFlash pro:
Automating privacy policy generation for mobile apps,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2021.

Class-dump: Generate objective-c headers from mach-o files, 2018.
[Online]. Available: https://github.com/nygard/class-dump
Uibutton, 2021. [Online]. Available: https://developer.apple.
com/documentation/uikit/uibutton

[Online].

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/RrWHVc
https://goo.gl/bwAHtp
https://goo.gl/N6y2Kw
https://github.com/zhunhung/Python-SentiStrength
http://sentistrength.wlv.ac.uk/
http://sentistrength.wlv.ac.uk/
https://www.ibm.com/cloud/blog/announcements/bye-bye-alchemyapi
https://www.ibm.com/cloud/blog/announcements/bye-bye-alchemyapi
https://github.com/stanfordnlp/CoreNLP
http://text-processing.com/docs/sentiment.html
http://www.dhgutte.com/adversative-coordinating-conjunction/
http://www.dhgutte.com/adversative-coordinating-conjunction/
https://shorturl.at/bdEU7
https://shorturl.at/bdEU7
https://f-droid.org/
https://github.com/
https://github.com/
https://www.apkmonk.com/
https://apkpure.com/
https://apkpure.com/
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://goo.gl/odr84X
https://s3.amazonaws.com/code2vec/model/java14m_model.tar.gz
https://s3.amazonaws.com/code2vec/model/java14m_model.tar.gz
http://web.cse.ohio-state.edu/presto/software/gator/
http://web.cse.ohio-state.edu/presto/software/gator/
https://github.com/ribot/android-guidelines/blob/master/project_and_code_guidelines.md
https://github.com/ribot/android-guidelines/blob/master/project_and_code_guidelines.md
https://stackoverflow.com/questions/12870537/android-naming-convention/34428819
https://stackoverflow.com/questions/12870537/android-naming-convention/34428819
https://goo.gl/NBJgk1
https://goo.gl/NBJgk1
https://goo.gl/vWoIU
https://goo.gl/gHv9sF
https://www.hongkiat.com/blog/programming-questions-websites/
https://www.hongkiat.com/blog/programming-questions-websites/
https://archive.org/details/stackexchange
https://pypi.org/project/javalang/
https://pypi.org/project/javalang/
https://sites.google.com/site/changeadvisormobile/
https://github.com/Jiachi-Chen/ReviewBugLocalization
https://github.com/Jiachi-Chen/ReviewBugLocalization
shorturl.at/qrPX2
https://github.com/iBotPeaches/Apktool
https://github.com/iBotPeaches/Apktool
https://www.nowsecure.com/blog/2021/09/08/basics-of-reverse-engineering-ios-mobile-apps/
https://www.nowsecure.com/blog/2021/09/08/basics-of-reverse-engineering-ios-mobile-apps/
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/nygard/class-dump
https://developer.apple.com/documentation/uikit/uibutton
https://developer.apple.com/documentation/uikit/uibutton

YU ETAL.: TOWARDS AUTOMATICALLY LOCALIZING FUNCTION ERRORS IN MOBILE APPS WITH USER REVIEWS

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Apple developer documentation, 2021. [Online]. Available:
https://developer.apple.com/documentation/technologies

K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S.
Gerber, and L. E. Barnes, “HDLTex: Hierarchical deep learning
for text classification,” in Proc. 16th IEEE Int. Conf. Mach. Learn.
Appl., 2017, pp. 364-371.

S.Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
and J. Gao, “Deep learning-based text classification: A comprehen-
sive review,” ACM Comput. Surv., vol. 54,2021, Art. no. 62.

S. Liu, C. Gao, S. Chen, N. L. Yiu, and Y. Liu, “ATOM: Commit
message generation based on abstract syntax tree and hybrid
ranking,” IEEE Trans. Softw. Eng., vol. 48, no. 5, pp. 1800-1817,
May 2022.

M. Chen and X. Liu, “Predicting popularity of online distributed
applications: iTunes app store case analysis,” in Proc. iConference,
2011, pp. 661-663.

M. Gémez, R. Rouvoy, M. Monperrus, and L. Seinturier, “A rec-
ommender system of buggy app checkers for app store moder-
ators,” in Proc. 2nd ACM Int. Conf. Mobile Softw. Eng. Syst., 2015,
pp- 1-11.

D. Kong, L. Cen, and H. Jin, “AUTOREB: Automatically under-
standing the review-to-behavior fidelity in Android applications,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp- 530-541.

A. Di Sorbo et al., “What would users change in my app? Summa-
rizing app reviews for recommending software changes,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 499-510.
S. Panichella and M. Ruiz, “Requirements-collector: Automating
requirements specification from elicitation sessions and user
feedback,” in Proc. IEEE 28th Int. Requirements Eng. Conf., 2020,
pp- 404-407.

Y. W. Teh, M. L. Jordan, M. J. Beal, and D. M. Blei, “Sharing clus-
ters among related groups: Hierarchical Dirichlet processes,” in
Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 1385-1392.

R. Baeza-Yates et al., Modern Information Retrieval, New York, NY,
USA: ACM Press, 1999.

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Can-
fora, and H. C. Gall, “ARdoc: App reviews development oriented
classifier,” in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2016, pp. 1023-1027.

L. Pelloni, G. Grano, A. Ciurumelea, S. Panichella, F. Palomba,
and H. C. Gall, “BECLoMA: Augmenting stack traces with user
review information,” in Proc. IEEE 25th Int. Conf. Softw. Anal.
Evol. Reeng., 2018, pp. 522-526.

Google Developers, “Ul/application exerciser monkey,” 2020.
[Online]. Available: https://developer.android.com/studio/test/
monkey

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective auto-
mated testing for Android applications,” in Proc. 25th Int. Symp.
Softw. Testing Anal., 2016, pp. 94-105.

A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and
qualitative comparison of program analysis techniques for secu-
rity assessment of android software,” IEEE Trans. Softw. Eng.,
vol. 43, no. 6, pp. 492-530, Jun. 2017.

Y. Cao et al., “EdgeMiner: Automatically detecting implicit con-
trol flow transitions through the android framework,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2015.

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical
deobfuscation of android applications,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2016, pp. 343-355.

Y. Zhang, X. Luo, and H. Yin, “DexHunter: Toward extracting
hidden code from packed android applications,” in Proc. Eur.
Symp. Res. Comput. Secur., 2015, pp. 293-311.

L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking
of Android apps,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.,
2017, pp. 358-369.

M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “DAPASA:
Detecting Android piggybacked apps through sensitive sub-
graph analysis,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8,
pp. 17721785, Aug. 2017.

M. Fan et al., “Android malware familial classification and repre-
sentative sample selection via frequent subgraph analysis,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 8, pp. 1890-1905, Aug. 2018.
L. Xue, X. Ma, X. Luo, L. Yu, S. Wang, and T. Chen, “Is what you
measure what you expect? factors affecting smartphone-based
mobile network measurement,” in Proc. IEEE Conf. Comput. Com-
mun., 2017, pp. 1-9.

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

1485

L. Yu, T. Zhang, X. Luo, and L. Xue, “AutoPPG: Towards auto-
matic generation of privacy policy for android applications,” in
Proc. 5th Annu. ACM CCS Workshop Secur. Privacy Smartphones
Mobile Devices, 2015, pp. 39-50.

L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang, “Toward auto-
matically generating privacy policy for Android apps,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 4, pp. 865-880, Apr. 2017.
J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid:
Detecting stealthy behaviors in Android applications by user
interface and program behavior contradiction,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1036-1046.

Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “UlPicker:
User-input privacy identification in mobile applications,” in Proc.
24th USENIX Conf. Secur. Symp., 2015, pp. 993-1008.

R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in Proc.
28th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013, pp. 345-355.
H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software
traceability with topic modeling,” in Proc. ACM/IEEE 32nd Int.
Conf. Softw. Eng., 2010, pp. 95-104.

L. Yu, X. Luo, C. Qian, S. Wang, and H. K. Leung, “Enhancing
the description-to-behavior fidelity in Android apps with pri-
vacy policy,” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 834-854,
Sep. 2018.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL:
Towards a static noninteractive approach to feature location,”
ACM Trans. Softw. Eng. Methodol., vol. 15, pp. 195-226, 2006.

L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy
policies of android apps?,” in Proc. 46th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2016, pp. 538-549.

T. Zhang, J. Chen, H. Jiang, X. Luo, and X. Xia, “Bug report
enrichment with application of automated fixer recommen-
dation,” in Proc. IEEEJACM 25th Int. Conf. Prog. Comprehension,
2017, pp. 230-240.

Le Yu received the PhD degree in computer sci-
ence from the Hong Kong Polytechnic University,
under the supervision of Dr. Xiapu Luo. Currently,
he is a research assistant professor with the
Department of Computing, Hong Kong Polytech-
nic University. His current research focuses on
mobile security and privacy, loT security, and vehi-
cle security.

Haoyu Wang is currently a full professor with
the School of Cyber Science and Engineering,
Huazhong University of Science and Technology
(HUST). He is leading the SECURITY PRIDE
Research Group (Security, Privacy, and Depe-
ndability in Emerging Software Systems). His
research covers a wide range of topics in Software
Analysis, Privacy and Security, eCrime, Internet/
System Measurement, and Al Security. He has
published more than 100 peer-reviewed papers.
He has been awarded three best/distinguished

paper awards, including WWW 2020 Best Student Paper Award (the first
award from China), and ACM OOPSLA 2020 Distinguished Paper Award.

Xiapu Luo is currently an associate professor
with the Department of Computing, The Hong
Kong Polytechnic University. His research focuses
on blockchain/smart contracts, mobile/loT security
and privacy, network/web security and privacy, soft-
ware engineering and internet measurement with
papers published in top conferences and journals.
His research led to eight best/distinguished paper
awards, including ACM SIGSOFT Distinguished
Paper Award in ICSE'21, Best Paper Award in
INFOCOM'18, Best Research Paper Award in

ISSRE’16, etc. and several awards from the industry. He regularly serves in

the program committee of major security conferences and is currently an
editor of IEEE/ACM Transactions on Networking.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

https://developer.apple.com/documentation/technologies
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

1486

Tao Zhang (Senior Member, |IEEE) received the
BS degree in automation, the MEng degree in soft-
ware engineering from Northeastern University,
China, and the PhD degree in computer science
from the University of Seoul, South Korea. After
that, he spent one year with the Hong Kong Poly-
technic University as a postdoctoral research fel-
low. Currently, he is an associate professor with the
School of Computer Science and Engineering,
Macau University of Science and Technology
(MUST). Before joining MUST, he was the faculty
member of Harbin Engineering University and Nanjing University of Posts
and Telecommunications, China. He published more than 60 high-quality
papers at renowned software engineering and security journals and con-
cerences such as IEEE Transactions on Software Engineering, IEEE
Transactions on Information Forensics and Security, IEEE Transactions
on Dependable and Secure Computing, IEEE Transactions on Reliability,
ICSE, etc. His current research interests include Al for software engineer-
ing and mobile software security. He is a senior member of ACM.

Kang Liu received the PhD degree in computer sci-
ence from NLPR, in 2010, under the supervision
of Prof. Jun Zhao. He is currently a professor with
National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy
of Sciences. His research interests include senti-
ment analysis, information extraction, question
answering, and natural language processing. He
has published more than 60 papers with top confer-
ences and journals including /EEE Transactions on
Knowledge and Data Engineering, ACL, 1JCAI,
EMNLP, WWW, CIKM, COLING etc.

Jiachi Chen received the PhD degree from the
Faculty of Information Technology, Monash Uni-
versity, Australia, under the supervision of Prof.
John Grundy, Dr. Xin Xia and Dr. Jiangshan Yu.
He is currently an assistant professor with the
School of Software Engineering, Sun Yat-Sen
University. Prior to joining Monash University, he
spent two years with the Hong Kong Polytechnic
University as a research assistant advised by Dr.
Xiapu Luo. His research interests include block-
chain, smart contracts, mining software reposi-
tory, software security, and empirical study.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Hao Zhou is currently working toward the PhD
degree with the Hong Kong Polytechnic Univer-
sity. Before attending PolyU, he worked with
PolyU as a research assistant from 2016 to 2018.
His research generally focuses on software and
system security. Specifically, his research interest
includes mobile app analysis, 10T security, fuzzing
and software testing.

Yutian Tang (Member, IEEE) received the BSc
degree in computer science from Jilin University,
China, and the PhD degree in software engineering
from The Hong Kong Polytechnic University, Hong
Kong SAR, China. He is currently an assistant pro-
fessor with the School of Information Science and
Technology, ShanghaiTech University. His current
research interests include mobile security and pri-
vacy, software product line, empirical software
engineering, and testing. He has published papers
in top-tier software engineering conferences and
journals. He is a member of HKCS, CCF and
EuroSys.

Xusheng Xiao (Member, IEEE) is currently an
assistant professor with the Department of Com-
puter and Data Sciences, Case Western Reserve
University (CWRU). His general research inter-
ests span between software engineering and
computer security, with the focus on developing
advanced analysis techniques to analyze com-
plex software behaviors for improving the reliabil-
ity and the security of complex software and
systems.

/
PN

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: ASU Library. Downloaded on April 25,2023 at 17:03:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

