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Abstract Software continues to evolve due to changing requirements, platforms and other environmental

pressures. Modern software is dependent on frameworks, and if the frameworks evolve, the software has to

evolve as well. On the other hand, the software may be changed due to changing requirements. Therefore, in

high-confidence software evolution, we must consider both framework evolution and client evolution, each of

which may incur faults and reduce software quality. In this article, we present a set of approaches to address

some problems in high-confidence software evolution. In particular, to support framework evolution, we propose

a history-based matching approach to identify a set of transformation rules between different APIs, and a

transformation language to support automatic transformation. To support client evolution for high-confidence

software, we propose a path-exploration-based approach to generate tests efficiently by pruning paths irrelevant

to changes between versions, several coverage-based approaches to optimize test execution, and approaches to

locate faults and fix memory leaks automatically. These approaches facilitate high-confidence software evolution

from various aspects.
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1 Introduction

Software systems continuously evolve and become more complicated, because they have to respond to

evolving requirements, platforms, and other environmental pressures [1–3]. Software evolution is the

dynamic behavior of programming systems as they are maintained and enhanced over their lifetime [2].

During software evolution, the software is modified due to changed requirements, platforms, etc., and

may incur extra faults. Therefore, it is necessary to facilitate high-confidence software evolution.

Modern software is dependent on frameworks. If the frameworks evolve, the software as the client

has to evolve as well. On the other hand, the software may be changed due to changing requirements.

Therefore, in high-confidence software evolution, we must consider both framework evolution and client
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Figure 1 Overview of high-confidence software evolution

evolution. In particular, framework evolution refers to the evolution occurring on the program in the

frameworks, whereas client evolution refers to the evolution occurring on the program of the client.

In practice, the API frameworks that a software client is dependent on may often change because these

APIs are updated or are replaced by others. For example, due to fault fixing or other requirements, an

old API is updated to a new version. Sometimes, developers want to use another API to replace the

current one because the platform changes (e.g., from the Android platform to the iOS platform). The

former is usually called API update, whereas the latter is called API switching. These API changes may

introduce incompatibilities into the client programs, and thus it is important to provide tool support to

adapt the client programs between different APIs in framework evolution. Besides framework evolution,

client programs may also be modified due to new requirements such as adding new functionalities or

conducting performance improvement, classified as client evolution. In either framework evolution or

client evolution, the software modifications may incur faults. That is, the software quality may become

worse during evolution. Therefore, it is necessary to assure the quality of modified software. In summary,

high-confidence software evolution addresses at least two main issues. The first one is tool support for

software evolution, and the second one is quality assurance of software evolution.

In the literature, there is a lot of research on software evolution [4–13]. In this article, we present

our recent research on high-confidence software evolution, which addresses the preceding two issues. To

address the first issue, we present client migration approaches to migrate the old client program to the

new APIs with tool support and ensure safety. To address the second issue, we present some testing

and debugging approaches to improve the software quality in evolution. In particular, we present a

path-exploration-based approach, which generates tests efficiently by pruning paths irrelevant to changes

between versions. To optimize test execution, we present an on-demand approach to reduce the number

of tests by maintaining their fault-detection capability and several prioritization approaches to schedule

the execution order of tests based on their coverage information. To actually improve the software quality,

we further present an approach to locate faults by mapping edits to mutants, and a static approach to

automatically fix memory leaks through inter-procedural pointer analysis.

Figure 1 shows an overview of high-confidence software evolution. Solid lines show the process of

software evolution. A program (denoted as P ) may evolve due to framework evolution or client evolution.

Developers add tests to the original test suite, and run tests to find whether there is a failure. If a failure

is found, they debug the program, modify the program from P ′ to P ′′, and rerun the tests, until all the

tests pass. The dashed lines in Figure 1 show our research in the corresponding steps for tool support

for software evolution or quality assurance of software evolution.

This article makes the following main contributions:

• We identify two scenarios that may compromise software quality, i.e., framework evolution and client

evolution, and present an overview of our recent research that helps assure high quality of the software
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as the software evolves.

• We show in detail how our approaches can be combined together to help find faults and repair

memory leaks introduced in software evolution. The proposed client migration techniques are effective

in assuring high quality of framework evolution, and test generation, test optimization, and program

debugging techniques are effective in assuring high quality of client evolution.

The rest of the article is organized as follows. Section 2 describes our research on client migration.

Section 3 presents our research on regression test generation. Section 4 describes our research on test

optimization, including test-suite reduction and test prioritization. Section 5 presents our research on

automated debugging, i.e., fault localization and repair. Section 6 presents a demonstrative example and

Section 7 concludes the article.

2 Client migration

Modern programs depend on specific frameworks. If a framework evolves, its client programs have to

evolve as well. To provide tool support to evolve client programs and ensure the correctness during client

migration, we first need to identify the transformation rules between different releases of the framework,

and then apply the changes to the client program. To address the first issue, we propose a history-

based matching approach, which considers all the revisions between the two releases in the history of

the API evolution. To address the second issue, we design a programming language that describes the

transformation rules, and automatically applies the changes to client code.

2.1 Transformation rule identification

In practice, it is typical that a software framework evolves independently from its client programs. For

various reasons, it is difficult for framework developers to always ensure backward compatibility when

evolving frameworks. Thus, automatic framework-evolution identification, which aims to recover the

mapping relationships between the APIs of one framework release and those of another framework release,

can benefit client developers.

Some approaches (e.g., CatchUP! [7] and MolhadoRef [5]) record change operations performed on the

framework with a specialized integrated development environment (IDE) and identify framework evo-

lution by replaying the recorded operations. Since such change operations can accurately characterize

framework evolution, these approaches can be very accurate. However, recording and maintaining the

operations along the evolution history of the framework could be a serious burden for framework de-

velopers. Thus, although some IDEs have already provided mechanisms to record change operations,

framework developers are typically reluctant to use these mechanisms. Therefore, it is not very common

for a framework to have recorded operations during its evolution history.

Some other approaches try to identify framework evolution via directly matching the two releases

of the framework based on some heuristics. Two basic heuristics are text similarity [14] and structure

similarity [15]. In particular, given two releases (denoted as R1 and R2), a method in R1 is regarded as

being evolved to a method in R2, if the two methods are similar in text or structure. Another effective

heuristic is based on comparing the two call graphs of the two releases [16]. The intuition of this heuristic

is that, if the set of callers of a method in R1 is very similar to that of a method in R2, there would

typically be a mapping relationship between the two methods. Generally speaking, given method A in

R1 and method B in R2, if we can define a metric (denoted as M) such that the closeness between M(A)

and M(B) indicates the likelihood that A evolves to B, such a metric can be used for identifying the

mapping relationships between R1 and R2. As a result, Weissgerber and Diehl [17] propose a series

of syntax-level metrics to facilitate framework-evolution identification. Furthermore, researchers have

demonstrated that using more than one heuristic simultaneously would typically lead to identifying more

useful transformation rules than using just one heuristic. In fact, various recent approaches [18, 19] are

based on multiple heuristics. To better balance precision and recall when using multiple heuristics, Wu

et al. [11] propose iterative matching to better utilize the strengths and better avoid the weaknesses of



Gao Q, et al. Sci China Inf Sci July 2016 Vol. 59 071101:4

different heuristics. Since the differences between the two releases are typically quite large, it would be

intrinsically difficult for these approaches to achieve both high precision and high recall without utilizing

the evolution history between the two releases.

We aim to bridge these two categories of approaches. The basic idea of our approach [20] is to consider

all the revisions between the two releases in the history of the framework evolution. In particular, we

first identify the transformation rules between each pair of adjacent revisions in the evolution history

and then aggregate a series of sets of transformation rules to form the final set of transformation rules

between the two releases. When identifying the transformation rules between a pair of revisions, we use

natural language processing to acquire change information from comments submitted with the second

revision as well as several existing heuristics used by previous matching-based approaches. Compared

with approaches based on replaying change operations, the set of transformation rules between each pair

of adjacent revisions plays a role similar to change operations, and the aggregation process is similar

to the replaying process. However, our approach is still based on matching. Thus, it would not bring

an extra burden to framework developers. Empirical evidence also demonstrates that our approach can

vastly outperform all previous matching-based approaches in both precision and recall.

2.2 Transformation rule presentation

For various reasons, programmers often need to migrate programs between different APIs. For example,

when an old API framework is upgraded to a new version and the new version is not backward-compatible,

the programmers have to modify the client programs in order to use the new API. As another example,

when we need to port a program to a new platform, we have to migrate the program so that it can work

with the API on the new platform. It would be beneficial for API vendors to provide automated tools

to assist the migration of client programs. When an API vendor upgrades its API, providing tools to

automatically migrate the client programs to the new version could prevent the potential loss of users.

Furthermore, the API vendors of one platform could provide tools to migrate client programs from other

platforms, attracting more users to their platform. For example, Python has provided the 2to3 script to

transform (or migrate) programs from Python 2.x to 3.x. Also, RIM has provided a tool to transform

Android applications into Blackberry applications. However, despite the many benefits of providing

migration tools, it is very difficult to provide such migration tools. As a result, such tools are rarely

provided in practice.

2.2.1 Our approach

To address such issue, we design a novel programming language to support migrating programs between

different APIs [21, 22]. Using the language, the API providers can easily describe the client programs

changes resulting from the API upgrade as a transformation program. We develop a tool that accepts

client code and the transformation program as input and then outputs new client code automatically

that adapts to the new API. The approach reduces the difficulties of providing migration tools by API

providers. A key feature of the approach is to support type safety: given any well typed transformation

program written in the language, if the client code is well-typed, the transformed code is also well-

typed. As a result, we can ensure that the transformation will never introduce any compilation error

in the client code. If a migration program itself correctly captures the mapping relations between the

old API and the new API, we can ensure that the resulting program is correctly migrated, i.e., being a

semantics-preserving transformed program.

It is challenging to ensure type safety in transformation. We can expect two challenges here. First, type

is one of the most complex components in programming language design. While transforming client code,

even if all the individual code snippets are well typed after transformation, the whole client code may not

be well typed. There are complex relations among different types, and the transformation program should

deal with these relations carefully. Second, the completeness is hard to ensure. Completeness means the

transformation program should cover all the type changes in API upgrade. Even the transformation

script published by the Python group, i.e., the 2to3 script, does not deal with completeness well. For
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example, client code using method file() in Python 2.x cannot be compatible with Python 3.x after it

is transformed by the 2to3 script.

To show a flavor of the approach, we use the following simple example client-migration task obtained

from a Java SDK upgrade, where class Hashtable is replaced by HashMap. Given the following piece of

code using class Hashtable,

void processTable (Hashtable t) {

Enumeration e = t.elements ():

...

}

we would like to replace it with the following piece of code since the class Hashtable is replaced by HashMap:

void processTable (HashMap t) {

Iterator e = t.values().iterator ():

...

}

To describe this transformation in the language, we need to write the following piece of code using the

transformation language:

(t : Hashtable ->> HashMap)

[ (t.elements ()) -> (t.values ().iterator ()) ]

This piece of code declares two things. First, the type Hashtable in the old API corresponds to HashMap

in the new API. Second, any call to the elements() method of Hashtable should be converted to a call to

values().iterator(). Given this piece of code, the approach automatically performs the transformation.

As we can see from the preceding piece of code, the transformation code is mainly in plain Java, and

on top of plain Java there is only a construct for direct replacement. In this way, it is easy for the

programmers to learn this transformation language. Furthermore, an existing study [23] has shown that

this simple form is able to handle many client migration cases in practice. This example gives an intuitive

sense of the transformation language, and next we present more details.

A transformation program includes a set of transformation rules. Each rule has a form as follows:

(x1 : C1 ↪→ D1, x2 : C2 ↪→ D2, · · · , xn : Cn ↪→ Dn)

[

JavaExpr1 → JavaExpr2

]

The first part of a rule is type declarations of meta variables. Each variable is bound by Java expression

JavaExpr1, and the type declaration of a variable xi shows the type change of this variable from Java

expression JavaExpr1 to JavaExpr2. Thus, notation Ci denotes the type of variable xi in JavaExpr1,

and Di denotes the type of variable xi in JavaExpr2. The semantics of this rule means (1) JavaExpr1
first matches a Java expression in client code in terms of the type of each variable; (2) during expression

matching, the meta variables will bind with a sub expression; (3) the matched expression will be replaced

by JavaExpr2, and each meta variable will be replaced by a concrete sub expression.

However, the preceding semantics are not sufficient to ensure the type safety. There are four conditions

to sufficiently ensure type safety, as described below.

First, for each code snippet introduced by a transformation rule, the code snippet itself should be

well-typed. In the preceding rule, this condition requires that JavaExpr1 and JavaExpr2 should be well

typed. Since the code snippets will be directly replaced by the code, any type error in the transformation

rules will be brought into the code.
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Second, each type in the source API should be mapped to at most one type in the target API. Using

the preceding rule as an example, if type Ci maps to type Dj and Dk, this condition requires that Dj

should be equal to Dk. Such requirement is mainly for the execution of the transformation rules. If one

type is mapped to more than one type in the target API, we would not know which type we should

replace with.

Third, the mapping between the source types and the target types must preserve the subtyping relation.

Let Ci and Cj be two types in the source API and m be the type mapping, Ci <: Cj =⇒ m(Ci) <: m(Cj).

The rationale of this condition can be seen from the following example. Suppose class JList is a sub

class of class Container while class List is not a sub class of class Composite. Considering the following

transformation rules, we have two type mappings from Container to Composite and from JList to List:

() [ new Container () -> new Composite (new Shell(), 0) ]

() [ new JList() -> new List () ]

then the following client code,

Container x = new JList();

will be transformed into the code as follows:

Composite x = new List ();

which contains a type error as class List is not a sub class of class Composite.

Fourth, the transformation rules must cover all type changes between the source API and target API.

If a type C is not covered, we cannot guarantee type safety if a client program uses C. For example, given

type C being replaced by type D in the new API, the client code snippet with type C will not be changed

if the transformation rules do not cover this type change. Then there will be type errors between the

transformed client code and new API.

Our study [22] has shown that these four conditions are sufficient for type safety. Furthermore, as

three non-trivial case studies show, the four conditions never exclude useful transformation for client

migration.

This approach requires developers to write the transformation programmanually, and the approach can

automate this process by using the transformation rules identified in Subsection 2.1. The transformation

rules already describe the transformed classes and methods. Based on these rules, the approach, combined

with existing type inference techniques, can generate a transformation program. However, in this case,

there could be false positives, because the identified transformation rules may not be precise enough.

Therefore, developers can choose to automate the whole process while tolerating possible false positives,

or write a transformation program manually while ensuring type safety. To further reduce false positives,

we can use regression testing techniques described in Sections 3 and 4.

2.2.2 Related work

Transformation frameworks. In addition to Twinning [23], there are also many other transforma-

tion languages. TXL [24] and Stratego [25] are general-purpose and grammar-oriented transformation

languages. These two languages accept grammar description, an under-transforming program, and a

transformation program as input, and output the transformed program. Like our work, these languages

perform the transformations on the abstract syntax tree of a program, but they do not consider specific

type systems for its general purpose. These two approaches cannot assure the well-typedness of the trans-

formed program. Like Twinning, Refaster [26] focuses on transformation over Java code. Refaster uses

before-and-after examples of Java code to illustrate a refactoring. This work mainly deals with method

replacement similar to our work. But Refaster cannot assure the well-typedness of transformed code, as

it only requires that each replaced code snippet is well typed. As we have discussed earlier, it cannot

assure the well-typedness of the whole program.
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Type-safe transformations. Hula [27] is a rule-based update language for Haskell, and it can assure

the well-typedness while updating Haskell programs. The type-safe update depends on a core update

calculus [28], which acts type-safe transformation on lambda calculus. Like our work, update calculus

also sets some constraints on transformation rules, and assures these rules can preserve well-typedness of

transformed programs of lambda calculus. This work allows one type to be transformed to only a more

generic type. Thus, some useful type changes, such as Vector to ArrayList, cannot be described using

these approaches.

Semantics-preserving transformations. Reba [29] treats the transformation as a set of refactor-

ings. When API upgrades, the update operations are recorded by tools as refactorings. These operations

can be replayed on client code and preserve its semantics. This approach limits transformation as refac-

toring, which is not sufficient in real API update. Moreover, this approach cannot support API switching.

Leather et al. [30] provide an approach to preserve the semantics of a program. The transformation rules

of this work allow a type to be replaced by only its isomorphic type, being limited in program trans-

formation. This work mainly focuses on transformation over lambda calculus, avoiding the problems

introduced by object orientation, such as subtyping.

3 Regression test generation

Besides framework evolution that causes client programs to evolve, client programs by themselves continue

to evolve throughout their lifetime undergoing various kinds of changes. These changes can be for the

purpose of introducing new features, refactoring, or fault fixing. The changes made to a program can

interact with other parts of the program in an unexpected way, resulting in regression faults. Thus,

to assure high quality in software evolution, it is highly desirable to detect regression faults as soon as

possible to reduce the cost in fixing them.

One effective way to detect regression faults is to adopt continuous testing. Continuous testing [31] tests

a program continuously as soon as a developer makes changes to the program. In particular, continuous

testing executes an existing regression test suite as soon as a developer makes changes to the program

(and the changes are compilable). The failing tests represent the behavioral differences 1) between the

new and the old program versions. The developer can then inspect the behavioral differences to quickly

detect and fix the regression faults that are introduced by the changes. Hence, continuous testing reduces

the cost of fixing regression faults by detecting them as soon as the changes are saved.

However, the effectiveness of continuous testing is limited by the effectiveness of the existing regression

test suite. According to the PIE model [32] of error propagation, a fault can be detected by a test suite

only if all the following three conditions are met:

• The test suite executes (E) the faulty statement.

• The program state is infected (I) by the execution of the faulty statement.

• The state infection is propagated (P) to an observable output.

Even if the existing test suite achieves 100% structural code coverage such as branch coverage, it may

not be able to detect regression faults as it might not satisfy conditions I and P of the PIE model.

State-of-the-art test generation techniques [33–42] can be used to generate tests on the new program

version to automatically augment the existing regression test suite to increase the effectiveness of the

test suite in terms of detecting behavioral differences. However, existing test generation techniques

(such as random test generation [34,36], search-based test generation [40,43], and path-exploration-based

test generation [33, 35, 37–39, 41, 42] techniques) do not specifically aim at finding behavioral differences

between the new and the old program versions. In particular, the tools aim at covering all branches

in the program (i.e., satisfying condition E of the PIE model) and not at specifically finding behavioral

differences between the old and the new program versions. Hence, these approaches are ineffective and

1) A behavior difference between the old and the new program versions can be reflected by the difference in observable

outputs of the two versions. A behavior difference does not necessarily signify a regression fault as the behavioral difference

might be intended by the developer.
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inefficient in finding behavioral differences, even with increasing computing power thanks to multi-core

architectures and cloud computing.

3.1 Our approach

To address the preceding issue, we propose a path-exploration-based test generation (PBTG) approach,

called eXpress [44, 45]. PBTG approaches are effective in generating a test suite that achieves high

structural coverage. To achieve high structure coverage, PBTG approaches try to explore all feasible

paths in the program. For real-world programs that have an exponential number of paths, such path

exploration is quite expensive. However, if our aim is to find behavioral differences between the new

and the old program versions, we do not need to explore all the paths. In particular, we do not need

to explore the paths whose execution cannot detect any behavioral difference between the two program

versions (referred to as irrelevant paths). eXpress prunes out all the irrelevant paths from the search space

of a PBTG approach. Hence, eXpress makes the path exploration directed towards finding behavioral

differences.

eXpress includes a novel practical application of the PIE model of error propagation. The key insight

of this work is that the execution of many paths in the program guarantees not to satisfy any of the

conditions E, I, or P of the PIE model. These paths can be pruned from the search strategy of a PBST

approach so that its efforts are directed towards finding behavioral differences. eXpress first determines

a set of paths (P�E) that cannot lead to any changed region in the program and a set of paths (P�P) that
cannot propagate a state infection to an observable output. eXpress prunes the set of paths P�E

⋃
P�P

from the search space of the PBTG approach. In addition, eXpress prunes a set of paths (P�I) that it

determines during path exploration by a PBTG approach. The paths in the set (P�I) are guaranteed not

to infect the program state after the execution of a changed region.

We have implemented eXpress as a search strategy for dynamic symbolic execution (DSE) [35, 37],

a state-of-the-art PBTG approach. In particular, the implementation guides DSE to avoid flipping

branching nodes whose unexplored side is guaranteed to lead to an irrelevant path (i.e., not satisfying

any of the conditions E, I, or P of the PIE model). To make the path exploration even faster, eXpress

includes a technique that can exploit the existing test suite. In particular, eXpress seeds the tests in the

test suite to the path exploration to efficiently cover various changed code regions that are not covered

by the existing test suite. As a result, behavioral differences are shown to be found earlier in the path

exploration.

3.2 Related work and challenges

Regression test generation based on symbolic execution. Although symbolic execution is effective

in systematically exploring program paths, it suffers from scalability issues such as path explosion. To

address the scalability issues, recent work explores the directions of exploiting existing test suites or

input partitions to reduce the search space. Marinescu et al. [46] propose an approach that leverages

existing test suites as seed inputs to reach certain program parts that are difficult to reach by applying

symbolic execution from scratch, and explores additional paths using lightweight symbolic execution to

detect regression errors. Böhme et al. [47] propose an approach that divides the common input space

between two program versions into different input partitions that either guarantee behavior-equivalence,

or expose differences for a subset of inputs. Rather than generating tests for the whole input space, their

approach explores differential partitions in a gradual manner and generates representative tests gradually

for each partition. To further improve the scalability, selective symbolic execution [48,49] can be used to

limit symbolic execution on critical parts of the changed programs.

Besides the scalability issues, symbolic execution also suffers from other issues [50–53], such as deal-

ing with complex objects, external environments, and loops. Although there exist specialized tools for

generating complex objects [51, 54, 55], automatically mocking environments [56–58], and dealing with

loops [59, 60], these tools cannot address all the issues encountered in complex software and are not
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optimized for regression test generation. Thus, there is also a strong need in addressing these issues for

regression test generation.

Change-interaction errors. As a type of regression errors, change-interaction errors happen when

multiple changes introduced in a program interact in unexpected ways. Santelices et al. [9] propose an

approach that formally models change interactions and uses dynamic slicing to detect change interactions

based on the models. Böhme et al. [4, 61] identify and formalize change-interaction errors in evolving

software, and propose a regression-test generation approach that uses symbolic execution to generate tests

for exposing change-interaction errors via the summarized control-flow and dependencies across changes.

Essentially, given a sequence of code changes C, there are 2|C| program configurations to be analyzed.

These approaches explore only the approximation of these configurations, and there is a need for a more

precise and more scalable approach that can expose the change-interaction errors for the whole space of

the program configurations.

4 Test optimization

In software evolution, programs are evolved from one version to another in the continuous development.

To ensure the quality of the program during software evolution, developers usually reuse the tests for an

early version while testing its latter version. As more and more tests for the previous version are added

to test the current version, the number of tests grows rapidly. Thus, it is not practical to reuse all the

tests collected in software evolution as it is costly to run such a large number of tests. It is necessary to

reduce the number of tests so as to reduce the cost on running tests in software evolution. To address

this problem, various approaches have been proposed to reduce the number of tests in software evolution,

especially regression testing, presented in Subsection 4.1. On the other hand, due to the cost concern

(including time and effort), sometimes it is impossible to reuse all these tests. The process of testing

on the current version may be stopped at any time. To maximize the fault-detection effectiveness of

existing selected tests considering such concerns, various approaches have been proposed to prioritize

tests, presented in Subsection 4.2.

4.1 Test-suite reduction

In the literature, most test-suite reduction techniques aim to select a minimal representative subset of

tests from a given test suite guaranteeing the same testing requirements, which are mostly code coverage

in software evolution. Typically, these techniques use the code coverage criterion as test requirements.

In particular, Jones and Harrold [62] use the modified condition/decision coverage as a criterion, while

some researchers [63, 64] use multiple coverage (e.g., branch coverage and definition-use pair coverage)

as a criterion. Using these code coverage criteria, researchers propose various techniques to select tests

satisfying the same code coverage criterion as the original test suite. In particular, Harrold et al. [6]

propose a heuristic to select tests by removing redundant and obsolete tests, Chen and Lau [65] propose

another heuristic combined with a greedy strategy, and Yoo and Harman [12] transform the problem of

test-suite minimization into a multi-objective optimization problem.

Existing test-suite reduction techniques produce a representative subset of tests with the same code

coverage, but test-suite reduction may cause loss in fault-detection ability. Sometimes, the loss is dramati-

cally huge. For example, according to our previous work [66], although the average loss in fault-detection

ability of the “replace” program resulting from test-suite reduction is 57.0%, the actual loss in fault-

detection ability ranges from 0% to 91.3%. The loss in fault-detection ability for the existing test-suite

reduction techniques may vary dramatically when they are applied in practice.

To control the loss in fault-detection ability resulting from test-suite reduction, we propose an on-

demand test-suite reduction approach [66], which is designed to control the loss in fault-detection resulting

from test-suite reduction for any given confidence level c%. That is, this approach first identifies the

relation between the loss in fault-detection ability and the code coverage of a test suite for any given

c%, and then reduces a test suite based on the preceding relation. In particular, this approach first
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identifies the quantitative relation between the loss in fault-detection ability and the code coverage by a

controlled experimental study. Formally, each cell in the fault-detection-loss table can be represented by

a variable Vc(i1, i2), which shows the loss in fault-detection capability in at least c% circumstances when

the coverage of a statement changes from i1 to i2.

Based on the fault-detection-loss table, we formulate the problem of on-demand test-suite reduction as

an integer linear programming problem (i.e., ILP problem), which targets minimizing the number of tests

by guaranteeing either global constraints or local constraints [66]. In particular, the global constraints

ensure that for each statement in the program at the confidence level c% there exists at most l% loss

in the fault-detection capability, whereas the local constraints ensure that for the program under test

at the confidence level c% the average loss in fault-detection capability is at most l%. By solving these

constraints, we produce a subset of tests whose total fault-detection loss is at most l% in at least c%

circumstances.

Compared with existing test-suite reduction techniques, the on-demand test-suite reduction approach

can guarantee at most a certain level of loss in fault-detection capability in test-suite reduction by

selecting a reasonable number of tests. In particular, compared with the typical test-suite reduction

approach proposed by Harrold et al. [6], the on-demand approach selects at most 60% more tests but

guarantees at most a certain level of loss in fault-detection capability whereas the former approach does

not.

To further improve the efficiency of our approach, we can combine test reduction techniques with

regression test generation techniques described in Section 3. In software evolution, existing tests that

do not cover new or modified statements tend to have lower fault-detection capability than the newly

generated tests that aim to cover new branches. Therefore, we can always keep the tests generated via

regression test generation techniques, and reduce the tests that do not cover new or modified statements.

For the rest of the tests, which exist in the original test suite and also may cover new statements, we

can then apply the on-demand test suite reduction. In this way we can improve the efficiency of our

approach.

4.2 Test prioritization

Test prioritization is firstly proposed in regression testing, aiming to schedule the execution order of

tests so that faults may be revealed early. In the literature, many test prioritization techniques [67–70]

have been proposed to schedule the execution order of tests based on some structural coverage (e.g.,

statement coverage, branch coverage, modified condition/decision coverage [62]). Based on these coverage

criteria, various prioritization algorithms have been proposed. For example, Jiang et al. [71] propose

an adaptive random approach, which selects tests based on the distance between selected tests and

remaining unselected tests. Li et al. [72] view test prioritization as a searching problem and thus propose

a genetic programming based approach to prioritize tests. Zhang et al. [73] propose to use integer linear

programming to represent and solve time-aware test prioritization. Besides these approaches, two typical

greedy strategies (i.e., the total and additional strategies) are widely studied and are evaluated to be very

effective even compared with some newly proposed test prioritization approaches.

Considering the benefit of the two greedy strategies, we propose a unified approach that combines these

two strategies by defining a basic model and an extended model [74, 75]. In particular, this approach

defines the probability that each unit uj (e.g., statement or method) contains undetected faults by Prob[j]

and calculates the priority of each test by the sum of Prob[j] if the test covers the unit uj. Furthermore,

during test prioritization, as selected tests may have revealed some faults, it is necessary to modify Prob[j]

if the faults in the unit uj may have been detected by existing selected tests. In particular, this unified

approach presents two models (i.e., the basic model and the extended model) to define how to modify

Prob[j] after selecting a new test. In the basic model, this approach uses p to represent the probability

that any test t can detect faults in any unit u and modifies Prob[j] based on p. In the extended model,

this approach not only modifies Prob[j] based on p, but also considers how many times the unit is covered

by existing tests. Based on the priority of each test, this approach selects the test with the largest priority



Gao Q, et al. Sci China Inf Sci July 2016 Vol. 59 071101:11

and modifies the priority of each test at the same time, until all the tests are scheduled. Based on the

parameter p and the two models, this approach may yield a series of generic strategies ranging from the

total to the additional strategies. In other words, the total and additional strategies can be viewed as

two instances of this approach. Furthermore, according to our empirical study, this approach using either

the basic or the extended model with uniform p values can significantly outperform the total strategy,

and sometimes outperform the additional strategy.

On the other hand, we present an adaptive test prioritization approach [76], which selects tests and

runs the selected tests simultaneously so that it is possible to apply the precise execution information

of the selected tests on the current program to improve further test prioritization. In particular, this

approach first calculates the fault-detection effectiveness of all tests based on their execution information

on the previous program and then selects the test with the largest fault-detection capability. In the

subsequent test prioritization process, this approach modifies the fault-detection capability of unselected

tests based on the output of the latest selected test, and selects the remaining tests with the largest

fault-detection capability until all the tests are selected. According to our empirical study, the adaptive

test prioritization approach performs better than the additional strategy in some subjects.

Furthermore, as it is costly to collect the execution information of programs, we propose to use the

static call graph of a test to estimate its dynamic coverage [77]. In particular, this static approach targets

tests written in the JUnit testing framework and views the sequence of methods called by a test as the

method coverage of the test. In other words, based on the static call graph of a test, this approach learns

which methods are called by this test and constructs the method coverage (as well as the statement

coverage). Based on static method coverage (or static statement coverage), this approach schedules the

execution order of these tests. Compared with existing dynamic approaches, which schedule the execution

order of tests based on their dynamic coverage, this static approach is less costly because it does not

require the execution of instrumented programs. Furthermore, according to the empirical results, this

static approach is competitive in prioritizing tests even when compared with the dynamic approaches.

Similar to test reduction, tests that cover new or modified statements may have better fault-detection

capability in software evolution, especially for the generated tests. Therefore, we give higher priority to

these tests in regression testing. For the rest of the tests, we further apply the previously described test

prioritization techniques.

5 Debugging

Test generation and test optimization techniques aim to find whether there are failures. Program de-

bugging, on the other hand, aims to localize faults and repair them. When software evolves, we seek

to use evolution information for automated program debugging. To localize faults as software evolves,

we utilize mutants and define a new strategy to achieve more accurate fault localization, presented in

Subsection 5.1. In software repair, we propose a static approach for automatically repairing difficult-to-fix

memory leaks by using regression tests during evolution, presented in Subsection 5.2.

5.1 Fault localization

It is typical that before a fault is fixed, the faulty statement(s) should be identified in the first place. In

fact, the results of fault localization can either provide developers with some clues for fault fixing or serve

as an important input for an automatic algorithm of fault fixing. As a result, there have been various

research efforts in the past decade. In general, there are two main lines of research on this topic.

The first line of research considers the situation that there exists only a faulty program. Approaches in

this line (e.g., TARANTULA [78] and SAFL [79]) typically compare the coverage information of passing

tests with the coverage information of failing tests. In particular, based on the coverage information, such

an approach calculates the suspiciousness score of each covered statement in order to rank the statements.

Typical formulae for calculating the suspiciousness score include TARANTULA [78], SBI [80], Ochiai [81],

and Jaccard [82]. Besides using the basic coverage information, some other approaches further use some
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additional information. One way to acquire additional information is to mutate the program to obtain the

execution information of the mutants [83]; another way is to manipulate program executions to obtain

the contrived coverage information (e.g., predicate switching [84], value replacement [85], and object

replacement [86]). Xuan and Monperrus [87] propose spectrum-driven test purification. This approach

separates existing tests into small fractions, and enhances test oracles for fault localization. Although

most of these approaches are applicable for localizing faults introduced in software evolution, this line of

research typically does not explicitly consider software evolution.

Unlike the first line of research, the second line of research is specific to software under evolution. In

this line of research, there are two main categories of approaches. Approaches in the first category rely

on executing a set of intermediate versions, each of which is composed of the program before evolution

and a subset of change edits performed during the evolution. A typical approach in this category is delta

debugging (DD) proposed by Zeller [88]. The DD approach uses a binary-search-like process to search in

the space of the intermediate versions. As some intermediate versions cannot be compiled, exact binary

search is infeasible for DD. Naturally, DD can also be used to identify which parts in the input trigger

the failure [89]. Approaches in the second category rely on change impact analysis. Stoerzer et al. [10]

use classification to identify a subset of changes that are more likely to be related to the failure. Ren

and Ryder [8] use some heuristics to further rank the changes in the identified subset. Zhang et al. [90]

and Alves et al. [91] further adapt heuristics in the first line of research (e.g., TARANTULA [78] and

SBI [80]) to rank fault-inducing changes. In our work, we utilize mutants to define a new strategy for

ranking fault-inducing changes [92]. The basic idea is to map change edits to mutants, which can serve

as a means to predict whether a heuristic such as TARANTULA or SBI is likely to achieve good results.

In other words, mutation changes made in mutants from the older version of the program can simulate

the real edits made by developers. Therefore, if we use mutation changes that can simulate the real edits,

and calculate suspiciousness scores by combining both mutation changes and real edits, we can find the

fault location more accurately.

Suppose that developers edit a method f() and introduce a new fault. The fault is exposed by a method

call to f(). Because it may happen that some correct statements are executed more in the failing tests,

the suspiciousness score of the method call to f() may not be ranked the highest. Using our approach,

in the original program, we can mutate statements in the method f() to indicate there is a change in

the implementation of method f(), and calculate the suspiciousness score using executions from both the

real edits and the obtained mutants. Therefore, we can reduce the impact from other statements, and it

is more likely to rank the failure-inducing change highest.

In the previous step of test optimization, we provide techniques to reduce and schedule tests. If a test

is executed earlier, we consider it to be more likely to discover a regression fault. In fault localization,

we also provide different weights to the same statement covered by different tests. If a test is executed

earlier, then its covered statement has a higher weight.

5.2 Repair

There are two main lines of research on automatic program repair. The first line of research consid-

ers general faults. Existing approaches mainly generate patches without evolution information [93–96].

Nguyen et al. [97] propose an approach to fix recurring faults, some of which have similar patterns be-

tween different versions during software evolution. The second line is specific to certain types of faults,

and approaches are specifically designed to fix these faults [98–100].

In software evolution, although many faults can be found through regression testing, some of them,

e.g., memory leaks, are hard to find via testing approaches [101,102]. There has been lots of research on

memory-leak detection [103–109]. However, all of them may introduce false positives.

Our work [110] aims to fix memory leaks automatically, and guarantee the correctness of the fix. We

require correctness because, if a fix may be wrong, programmers still need to examine all of the generated

patches by understanding the program and finding the correct fix position. Dynamic approaches need

to run the program, and it is difficult and time-consuming to explore all program paths to ensure fix
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correctness. Therefore, we explore static approaches to automatically detect and fix memory leaks.

The definition for a correct fix is as follows. A correct fix for a memory leak is an insertion of a

deallocation statement s into a program, and satisfies the following three conditions:

(1) A memory chunk c is allocated before s, and s releases c.

(2) There is no other deallocation statement after the inserted statement.

(3) There is no use of c after the execution of s.

To satisfy the three conditions, we design an algorithm based on the control flow graph (CFG). A

control flow graph is a graph on which nodes represent statements and edges represent jumps between

statements.

First, in order to ensure that the inserted deallocation statement frees the corresponding memory

chunk, we perform pointer analysis [111] to identify the references of each memory chunk. There have

been various research efforts on pointer analysis [111–114], and therefore we utilize existing pointer

analysis algorithms, rather than designing one by ourselves. Our approach requires pointer analysis to

provide inter-procedural and complete results, i.e., each pointer points to all possible memory locations.

Flow-/context-/field-sensitivities can provide more accurate results. The pointer analysis algorithm used

in our implementation is DSA [111], which is inter-procedural, flow-insensitive, context-sensitive with

heap cloning, field-sensitive, unification-based and SSA-based.

Second, to perform inter-procedural analysis, we need to either construct a super CFG of all procedures,

or build procedure summaries. The overhead of the former is too high and not feasible in practice.

Therefore we build summaries for each procedure. The summaries indicate heap memory usage in the

points-to graph of each procedure, i.e., whether a memory location represented as a node in the points-to

graph is allocated, used, freed, or escaped. Then we use each procedure summary to identify CFG nodes

whose corresponding statements allocate, use, or free a certain memory chunk.

Third, based on the identified CFG nodes, we perform four passes of intra-procedural data flow analysis,

using the monotone framework [115]. The data at each program point is a set of CFG nodes, whose

corresponding statements are allocations. The four passes of data flow analysis are as follows:

(1) A forward data flow analysis to ensure that there are no deallocation statements before the inserted

deallocation statement.

In this step, we denote data at each CFG node n as Df n, which is a set of allocations that may have

been deallocated before or at the current CFG node. The meet operator is set union, and the transfer

function at node n is f1n(Df ):

f1n(Df ) =

{
Df ∪ {m1, . . . ,mk}, n labelled as Dealloc(m1, . . . ,mk),

Df , otherwise.

(2) A backward data flow analysis to ensure that there is no use or deallocation statements after the

inserted deallocation statement.

We denote data at each node n as (Dbn, Ud). Dbn is a set of allocations that may be deallocated after

or at the current CFG node, and Ud is a set of allocations that may be referenced after or at the current

CFG node. The meet operator is the set union of each component, and the transfer function at node n

is f2n((Db, U)):

f2n((Db, U)) = (f1n(Db), f2′n(U)),

where f2′n(U) =

{
U ∪ {m1, . . . ,mk}, n labelled as Use(m1, . . . ,mk),

U, otherwise.

(3) A forward data flow analysis to identify variables that point to leaked allocation chunk.

We first calculate that, at each CFG edge, the set of CFG nodes whose corresponding allocation chunks

are safe to free. We use the following formula:

Ae = Mp −Df e.from −Dbe.to − Ue.to.

We use e.from to denote the head of e and use e.to to denote the tail of e.
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1 public void handleArgs(String[] args){

2 if (args[0].equals(“-t”)){

3 Hashtable<String,Integer>t

4 =new Hashtable<String,Integer>0;

5 for (int i=1; i<args.length; ++i)

6 t.put(args[i], i);

7 processTable(t);

8 }

9 else if (args[0].equals(“-h”))

10 showHelp();

11 else if (args[0].equals(“-v”))

12 showVersion();

13 }

Framework evolution

re v.1 Changed Hashtable to HashTable

re v.2 Changed HashTableto HashMap

Client evolution

13 else if (args[0].equals(“-s”)) {

14 f();

... ...

Test inputs

1: args = { “-t”}

2: args = { “-t”, “a”}

3: args = { “-t”, “a”, “b”}

4: args = { “-h” }

5: args = { “-v” }

Figure 2 A code snippet

Then we perform depth-first search in the points-to graph, and find the variable v, such that v points

to a set of nodes s in the points-to graph, and s ⊆ Ae. Therefore, v is the variable that we use for the

inserted deallocation statement.

(4) A forward data flow analysis that selects possibly early points to insert the deallocation statement.

To achieve this goal, we use a greedy algorithm. In particular, we record CFG nodes in the data set

of each CFG edge during forward analysis. Once the data set of an edge contains the same CFG node,

we filter the edge to avoid possible double free.

Last, after we have identified edges to fix, we insert the deallocation statement free(v) at the corre-

sponding program point, where v represents the variable pointing to the leaked allocation chunk.

We have implemented our approach as a tool, LeakFix. The evaluation shows that LeakFix is able

to fix a substantial number of leaks in the SPEC2000 benchmark, and is scalable for large applications.

6 Demonstrative example

In this section, we study an example of a code snippet (shown in Figure 2), and illustrate the effectiveness

of our approaches in the evolution of the code snippet. This example contains a method for processing

program arguments. Five existing tests are provided to test the code snippet. The method first checks

the first argument. If the argument equals “-t”, the method puts the rest of the arguments into a hash

table, and then calls another method to process the hash table. If the argument equals “-h”, the method

calls another method to print help information. If the argument equals “-v”, the method calls another

method to print the version of the program. Initially this code snippet has no faults. However, in the

evolution process, there are two scenarios that may lead to faults for this code snippet:

(1) Framework evolution. The Java SDK may update Hashtable to HashMap via two revisions, and the

existing code that uses Hashtable (Lines 3–4) will lead to a compilation error.

(2) Client evolution. There may be a new requirement to add a new argument option “-s”, and a new

feature is to be implemented for this option. Therefore, developers may add a new if block and a method

call to f(). It is possible that the new block of the program contains new faults.

In the first scenario, the transformation rule changes Hashtable to HashMap in two revisions. We

use natural language processing techniques to identify the changes in each revision, i.e., Hashtable is

changed to HashTable, and HashTable is changed to HashMap. Then we aggregate the changes in both

revisions to generate the transformation rule, which is changing Hashtable to HashMap. With the presented

transformation rule, developers can write a transformation program using our transformation language.

The transformation program is shown as follows:

(t : Hashtable ->> HashMap)
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Given the code snippet in Figure 2 and the preceding transformation program, our approach can then

automatically transform the code snippet to adapt to the new API.

In the second scenario, we aim to find potential faults via testing, and fix these faults via debugging.

There are three steps for this scenario.

The first step is to generate tests. We prune all paths whose executions are guaranteed not to detect

any regression fault, and guide symbolic execution to cover the newly added branch. In this way, we

make symbolic execution scalable for generating tests that are effective in detecting regression faults, and

generate the new test {“-s”}.
The second step is to optimize tests. During evolution, more tests in Figure 2 are added and the cost

in testing increases. We select a portion of the tests by constructing a fault-detection-loss table by a

preliminary study on the relation between the loss in fault detection and statement coverage, and then

reschedule the execution order of tests. For example, we determine that test input 3 may have better

fault-detection ability than test input 4 by leveraging previous execution information.

If we find a failure through testing, the third step is to locate the corresponding fault and fix it. In this

code snippet, we aim to locate the potential fault in the method call to f() automatically. As described

in Subsection 5.1, we can mutate the statements in f() to simulate real edits, which can help find the

fault location more accurately.

7 Conclusion

Software continues to evolve, and programmers may introduce faults during software evolution. Therefore

it is important to maintain high quality during software evolution. In our work, we explore approaches

to assure high confidence in the case of framework evolution and client evolution. To correctly migrate

client code, we utilize history information and design a programming language that describes differences

between different versions of API framework code. In addition, we generate regression tests based on

change differences between two versions using symbolic execution, and optimize tests mainly based on

evolution information. Furthermore, we use evolution information for fault localization, and propose a

static approach for automatically fixing memory leaks. The results show that such direction is promising

and deserves further investigation.
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