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ABSTRACT

The long-lasting Android malware threat has attracted significant
research efforts in malware detection. In particular, by modeling
malware detection as a classification problem, machine learning
based approaches, especially deep neural network (DNN) based
approaches, are increasingly being used for Android malware de-
tection and have achieved significant improvements over other de-
tection approaches such as signature-based approaches. However,
as Android malware evolve rapidly and the presence of adversarial
samples, DNN models trained on early constructed samples often
yield poor decisions when used to detect newly emerging sam-
ples. Fundamentally, this phenomenon can be summarized as the
uncertainly in the data (noise or randomness) and the weakness
in the training process (insufficient training data). Overlooking
these uncertainties poses risks in the model predictions. In this
paper, we take the first step to estimate the prediction uncertainty
of DNN models in malware detection and leverage these estimates
to enhance Android malware detection techniques. Specifically, be-
sides training a DNN model to predict malware, we employ several
uncertainty estimation methods to train a Correction Model that de-
termines whether a sample is correctly or incorrectly predicted by
the DNN model. We then leverage the estimated uncertainty output
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by the Correction Model to correct the prediction results, improving
the accuracy of the DNN model. Experimental results show that
our proposed MALCERTAIN effectively improves the accuracy of the
underlying DNN models for Android malware detection by around
21% and significantly improves the detection effectiveness of ad-
versarial Android malware samples by up to 94.38%. Our research
sheds light on the promising direction that leverages prediction un-
certainty to improve prediction-based software engineering tasks.
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1 INTRODUCTION

Malware is a long-lasting threat in the Android app ecosystem. Mil-
lions of emerging Android malicious apps were identified from time
to time, even in the official Google Play market [2]. The increas-
ing Android malware threats have attracted significant research
efforts in our community. According to the statistics [9], a large
number of papers (10,000+) were focused on Android malware
detection, and a plethora of approaches have been proposed, in-
cluding signature-based approaches [11, 12, 53], behavior-based
approaches [10, 26, 46], and machine learning based approaches [59,
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66, 76]. Among these Android malware detection approaches, Deep
Learning (DL) based approaches such as Deep Neural Networks
(DNNis) [20, 34, 55, 61] have been adopted by many researchers in re-
cent years [3, 18, 32, 41, 44], as they have shown promising achieve-
ments over other machine learning based approaches. For example,
a number of different malware detection models including Multi-
layer perceptron (MLP) [18], CNNs [44] and RNNs [41] are created
based on different static features, and all of them report promising
results over other existing malware detection approaches.

However, most existing DNN models for Android malware de-
tection are trained under the assumption of a closed-world sce-
nario [3, 38, 39, 62, 69], which assumes that the training and test-
ing datasets are drawn from in-distribution (ID). In reality, due
to the rapid evolution of Android malware, DNN models trained
on early constructed samples often yield poor decisions when
used to detect newly emerging samples [70], which is known as
concept-drift [6, 28]. Furthermore, DNN models are highly sensi-
tive to out-of-distribution (OOD) samples and adversarial samples,
which makes them less robust [8, 17, 24, 35, 45, 69], especially
when dealing with samples from different malware families and
domain shifts [28, 71]. To address these issues, most models adopt
the approach of periodic retraining [27, 30, 51]. Unfortunately, this
approach has significant drawbacks. First, periodic retraining re-
quires a large amount of annotated data, which is costly to obtain.
Second, it is challenging to conduct targeted training and anticipate
the weaknesses of the model in advance, particularly in light of
the wide variety of Android malware. Third, it is difficult to esti-
mate the timing for retraining due to many unpredictable zero-day
malware [16, 52, 73], and by the time the model’s performance dete-
riorates, it may have already been subject to numerous attacks [28].

As suggested by recent research [14, 31], the limitations of DNN-
based Android malware detection are mainly caused by the uncer-
tainty inherent in the data (aleatoric uncertainty [31]) or the weak-
ness of the neural network in the training process (epistemic uncer-
tainty [31]). Specifically, aleatoric uncertainty is usually caused by
the inherent noise or randomness in the dataset, which cannot be
overcome by expanding the training set. Epistemic uncertainty is
usually caused by a lack of knowledge and insufficient cognition of
the model in the training process, which refers to the confidence
level of the model in its prediction. This form of uncertainty oc-
curs when there are insufficient training data and/or the model’s
parameters are improperly adjusted. When the model is required to
predict the samples generated by the shifted version of the training
data or the samples outside the data distribution region, there may
be a high degree of epistemic uncertainty. Overlooking these uncer-
tainties poses great risks on the model prediction accuracy, and also
makes models more vulnerable to adversarial malware samples. To
overcome the aforementioned limitations, new techniques of uncer-
tainty estimation are in dire need to identify uncertain predictions,
so that these predictions can be passed on to human experts for
verification [13], or even fixed automatically.

Recognizing the importance of uncertainty estimates, recent
efforts [4, 48] have been put forth to leverage uncertainty in im-
proving the model’s prediction accuracy. For example, in image
recognition [75] area, many researchers propose approaches to
measure the differences in uncertainty metrics between different
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types of samples, and define some uncertainty metrics to distin-
guish common benign samples from malicious samples generated
by attacks. Therefore, a simple way to enhance DNN-based Android
malware detection is to draw on the idea that prediction uncertainty
can distinguish different samples (correctly classified samples and
incorrectly classified samples). However, these existing works are
mostly limited to a single or few uncertainty assessment metrics.
Thus, it is not clear if the uncertainty estimations are potentially
subject to the bias of their training data, and what are the optimal
way to integrate these estimations to improve the model accuracy.

In this paper, we take the first step to explore how we can lever-
age the prediction uncertainty to improve DNN-based Android
malware detection models. Our key insight is if we can identify
uncertainty metrics that differ greatly between correct and incor-
rect predictions, we can use these metrics to pinpoint the potentially
incorrectly-classified samples and correct their classification results
accordingly.

To this end, we first conduct a characteristic study that aims to
measure which uncertainty estimation method and metrics can dis-
tinguish correct and incorrect predictions of DNN-based Android
malware detection models (see § 3). Specifically, we train a DNN-
based Android malware detection model and apply the model on a
test dataset that contains OOD app samples (i.e., data having un-
certainty) to obtain the correct and incorrect predictions. We then
employ existing uncertainty estimation methods (e.g., Variational
Bayesian Inference [21, 65]) to train a set of model ensembles!,
apply these model ensembles on the test dataset to obtain their
predictions, and compute uncertainty estimation metrics (e.g., En-
tropy [47, 48] and Kullback-Leibler (KL) divergence [37]) based on
these prediction results. The results show that all these metrics
can effectively differentiate correct and incorrect predictions. In
particular, the Kullback-Leibler (KL) divergence metric computed
using the Variational Bayesian Inference method is among the best
to identify incorrect predictions.

Motivated by this study, we propose a general framework, MAL-
CERTAIN, which finds an optimal way of using prediction uncer-
tainty to improve the performance of DNN-based Android malware
detection models (see § 4).

Specifically, given a DNN-based Android malware detection
model (called the Base Model), MALCERTAIN first trains a number of
model ensembles atop the Base Model, and applies the Base Model
and these model ensembles on a correction training dataset to obtain
their prediction results. MALCERTAIN then computes uncertainty
estimation metrics based on the prediction results of the model
ensembles, groups the prediction results of the Base Model into
two classes, i.e., correct predictions and incorrect predictions, and
trains a machine learning model (called the Correction Model) that
can distinguish whether a sample is correctly or incorrectly pre-
dicted by the underlying DNN model. With the Correction Model,
when the Base Model is applied to obtain new prediction results,
the Correction Model can determine whether the prediction results
are reliable or not and correct the unreliable prediction results to
improve the accuracy of the Base Model.

In summary, this paper makes the following contributions:

1A model ensemble is a group of slightly different models.
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e We make the first attempt to leverage the characteristics of
prediction uncertainty in DNN-based Android malware de-
tection models to improve their model accuracies. We show
the discrepancy in prediction uncertainty between correct
and incorrect predictions of these models can be detected
using a number of metrics (e.g., Entropy, KL divergence).

e We propose a novel framework, MALCERTAIN, to pinpoint
the samples that are likely to be incorrectly classified by a
DNN-based Android malware detection model and correct
the incorrectly classified predictions to improve the model
performance.

e We conduct extensive experiments on 26,748 apps to evaluate
the effectiveness of MALCERTAIN. By applying MALCERTAIN
to two state-of-the-art DNN-based Android malware detec-
tion models, we show that when these models are used to
detect OOD samples, MALCERTAIN is capable of improving
the model performance (around 21% improvements in ac-
curacy and 49% improvements in the F1 score). Meanwhile,
MALCERTAIN can also improve these models’ capabilities in
identifying the adversarial samples.

To facilitate future research, we have made our tool open-source
as a project [42].

2 BACKGROUND AND RELATED WORK

2.1 Uncertainty in Android Malware Detection

DNN-based Android malware detection inevitably suffers from the
two types of uncertainties. First, due to the explosive growth and
the increasing complexity of Android apps [23], it is almost infeasi-
ble to manually label new apps for training new models, and thus
the most commonly used labeling method is based on antivirus ser-
vices. However, such a mechanism often leads to a certain degree of
mislabeling, causing noisy labels in the training dataset (referred to
as Aleatoric Uncertainty [14]). Second, to evade detection or apply
new malicious tactics, Android malware developers’ ever-evolving
techniques have resulted in a constantly shifting data distribution
within the realm of Android malware samples, causing detection
models to become less effective in identifying malware over time.
Particularly, samples that exhibit distributional differences from
detection models’ training datasets are often referred to as OOD
samples, and these OOD samples introduce another type of uncer-
tainty to the trained models (referred to as Epistemic Uncertainty).

Estimating the Uncertainty. In general, the methods for estimat-

ing the prediction uncertainty can be categorized in four types [14]:

o Single deterministic methods. For a single deterministic neu-
ral network, the parameters are deterministic. It gets the same
predicted value for the same sample. For multi-classification
tasks, we can use the output of the softmax layer to represent
the probability of each class, and then quantify the uncertainty
according to this set of probability values. For regression tasks,
Oala et al. [49] introduced an uncertainty score based on the
lower and upper bound output of an interval neural network.

e Variational Bayesian Inference (VBI) approximates the (in
general intractable) posterior distribution by optimizing over a
family of tractable distributions [5, 21].

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

¢ Ensemble methods combines the predictions of several differ-
ent deterministic networks at inference. There are subtle differ-
ences between these determination networks, such as different
training epochs, different initialization parameters, different loss
functions and optimizers, etc [54, 56].

e Test-time augmentation methods. The prediction is given
based on the deterministic network, but multiple predictions will
be obtained by increasing the number of sample inputs [37].

Metrics. To measure the degree of uncertainty, a number of estima-
tion metrics have been proposed and widely used in our community.
For example, Prediction Confidence Score (PCS) is defined as the dif-
ference in probability between the two classifications with the
highest probability [75]. It is often used to estimate the uncertainty
of a softmax output (a vector representing the probability distribu-
tion for each category) in a multi-class classification task. Softmax
Entropy is defined as the entropy of the multi-categorization out-
puts [43] to quantify the level of confusion in the softmax outputs.
Besides, given that the models often make overconfident predic-
tions and become unreliable, researchers seek to generate multiple
softmax outputs for a sample, and adopt metrics such as Mutual
Information [33] and Variance [77], which quantify the difference
between a single softmax output and the mean of all softmax out-
puts to achieve more precise uncertainty estimation. For binary-
classification tasks (such as Android malware detection) that output
confidence scores, researchers construct model ensembles based on
different uncertainty estimation methods to obtain a set of proba-
bility values and quantify the differences among this set of output
values through some metrics. The common metrics include Entropy,
Kullback-Leibler (KL) divergence, Standard deviation, etc., which are
detailed in § 4.2.1.

Related Work on Applying the Uncertainty. Recently, some
researchers have made efforts in measuring and understanding un-
certainty. For example, Zhang et.al [74] introduced a new definition
of label uncertainty, and measured the robustness of the image clas-
sification model from the perspective of label uncertainty. Specifi-
cally, in the software engineering community, there have been a
few research attempts. For example, one of the earliest studies [4]
made an initial attempt to enhance software analysis performance
by leveraging uncertainty. Nguyen et.al [47] explored the utility of
the information contained within the Bayesian neural network in
detecting OOD data in PE malware detection. Li et.al [37] conducted
an empirical study to evaluate the quality of predictive uncertainties
of malware detectors and compared different uncertainty estima-
tion methods and metrics as well as differences before and after
calibration. Inspired by previous research, this paper aims to en-
hance the capabilities of DNN-based Android malware detectors
by tackling the prediction uncertainties of the samples.

2.2 DNN Based Android Malware Detection

Deep neural networks have made remarkable achievements in im-
age recognition, Natural Language Processing (NLP) and other
fields. In recent years, researchers have applied DNNs to Android
malware detection and achieved promising results [18, 32, 41, 44].
For example, Grosse et.al. [18] implemented an Android malware
detector based on Multilayer perceptron (MLP), taking advantage of
features extracted from Drebin [3] (including used permission and
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Figure 1: The confusion matrix of the Base Model’s prediction
results on two datasets.

sensitive APIs, etc.). Kim et.al. [32] implemented MultimodelDNN,
a DNN-based malware detector that extracts 5 kinds of features
including permissions, sensitive strings, system APIs, Dalvik op-
code and the ARM opcodes from native binaries. Besides, there
are also studies that convert apps into images/bitmaps and then
process them through DNN algorithms using image-based fea-
tures [22, 60, 72]. For example, Unver et.al. [60] converted some
files in the Android app source to gray-scale images, and then some
image-based local and global features were extracted from the con-
structed gray image dataset, and used to train a CNN model for
Android malware detection. Huang et al. [22] converted the byte-
code of classes.dex into RGB color code, and converted it into a
fixed-size color image. They input color images into a convolution
neural network for automatic feature extraction and training.

2.3 The Adversarial Examples in DNN

An adversarial example is a sample of input data that has been
slightly modified with the aim of making the DNN model misclassify
it. It is known that the existence of adversarial examples poses
challenges to DNNs’ generalization ability. Szegedy et al. [58] found
that neural networks are relatively fragile and vulnerable to attacks
by adversarial examples. Only a few changes to the samples can
make mistakes in the neural network classifier. At present, academia
has not yet reached a final conclusion on the cause of adversarial
examples. Szegedy et al. [58] believe that the highly nonlinear
nature of neural networks leads to the existence of adversarial
examples. Goodfellow et al. [15] believe that the linear behavior
of neural networks in high-dimensional space is the real reason
for the existence of adversarial examples. Based on this point of
view, the authors designed a simple and effective method to quickly
generate adversarial examples, namely the fast gradient symbol
method (FGSM). Zhang et.al. [75] made an empirical study and
found the characteristics of the uncertainty metrics of malicious
samples and normal samples, and then constructed adversarial
examples that did not meet these metrics.

3 CHARACTERISTIC STUDY

To address the problem of OOD samples for DNN-based Android
malware detection models, we conduct a characteristic study that
aims to understand whether existing uncertainty estimation met-
rics can be used as a reliable indicator to distinguish correct and
incorrect predictions. Specifically, we first train a Base Model based
on an open-source DNN-based Android malware detection model,
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DeepDrebin [18], using a training dataset that contains malware
from MalRadar and MalGenome and benign apps from Androzoo.
We then test the Base Model using a test dataset that contains mal-
ware from two other datasets (Drebin dataset and AMD dataset)
and different benign apps from Androzoo.

Prediction on OOD Samples. The detection results are shown in
Figure 1. We can see that the vast majority of the false predictions
belong to the cases where malicious samples are misclassified as
benign samples (41.82% of the malware in the Drebin dataset and
55.91% of the malware in the AMD dataset). This indicates that
the model’s false negative rate (FNR) is far greater than the false
positive rate (FPR). The poor model performance on OOD samples
also shows that DNN-based Android malware detection models
suffer from concept-drift.

Uncertainty Estimation Method and Metrics. In order to esti-
mate the uncertainty of these predictions, we choose five commonly
used methods to construct model ensembles: (i) Epoch Ensemble,
(ii) Variational Bayesian Inference, (iii) Monte Carlo Dropout, (iv)
Deep Ensemble, and (v) Weighted Deep Ensemble. See § 4.1.2 for de-
tails of these methods. We train five uncertainty estimation model
ensembles using the same training set. Further, to quantitatively
assess the prediction uncertainty, we select three commonly used
metrics: entropy, Kullback-Leibler (KL) divergence, and standard
deviation, all of which can be used to quantify the degree of dis-
persion in a set of data. Fundamentally, these metrics are used to
describe the extent to which a sample varies in its predictions (i.e.,
the predicted probabilities belonging to each class) from multiple
similar models in each model ensemble. Typically, a larger metric
value indicates a greater disagreement between the models in the
ensemble, and thus the uncertainty is higher.

Result Analysis. The samples are divided into two categories
based on whether they are misclassified by the Base Model or not.
After that, we computed uncertainty metrics for each sample in
each category. Figure 2 shows the CDF distribution of three uncer-
tainty metrics for the correctly classified samples (solid line) and the
incorrectly classified samples (dotted line), with each color mark-
ing a type of model ensemble. We can see that all the uncertainty
metrics (entropy, KL divergence, and standard deviation) display
significantly different distributions in the two types of samples. The
uncertainty values of the incorrectly classified samples are gener-
ally larger than those of the correctly classified samples. The dif-
ference is especially notable for the VBI method, with roughly 75%
of correct predictions having uncertainty metrics of 0, compared
to roughly 10% of incorrect predictions. Thus, these uncertainty
metrics computed based on different uncertainty estimation meth-
ods can be used as indicators to differentiate reliable and unreliable
predictions. This motivates us to design an automated approach to
flag unreliable predictions and correct these prediction results.

4 DESIGN OF MALCERTAIN

Enlightened by the findings of the preliminary study, we propose
MALCERTAIN, a general framework to improve the performance of
DNN-based Android malware detection models based on predic-
tion uncertainty. Figure 3 illustrates the overall architecture of the
framework. Its operation goes through three main phases: (i) DNN
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Figure 2: A comparison of Entropy, Kullback-Leibler divergence and Standard deviation of prediction results for correctly
classified and incorrectly classified samples. The three subgraphs (a), (b), and (c) in the upper half of the graph are used to
compare the uncertainty differences of samples in the Drebin dataset. The three subgraphs (d), (e) and (f) in the lower part of
the figure are used to compare the uncertainty differences of the samples in the AMD dataset. The solid line represents the
correctly classified sample, and the dotted line represents the incorrectly classified sample.

model training: we select a DNN-based Android Malware Detection
Model and generate feature vectors to train a “Base Model”. In addi-
tion, we identify some proper uncertain estimation methods to train
a number of model ensembles by strategically mutating the Base
Model. (ii) Uncertainty-based Correction Model training: we design
some uncertainty metrics to train a “Correction Model” by grouping
the samples into two sets - correctly and incorrectly classified; (iii)
Result correction: we revise the original predicted results of the
Base Model according to the Correction Model’s detection.

4.1 DNN Model Training

4.1.1 Base Model. In the first phase, we choose a DNN-based An-
droid malware detection model, such as DeepDrebin. Then the apps
from the training set are transformed into feature vectors through a
“Feature Extraction” process, and these feature vectors are used to
train the chosen malware detection model, i.e., the Base Model. We
strictly follow the corresponding malware detection approaches to
extract features and train the models.

4.1.2  Uncertainty Estimation Methods. The intuition behind esti-
mating uncertainty is to see if there is a significant variation in the
predictions made by the model after making a slight modification
to the model. Given a classification model M and a test sample S,
imagine that after we modify one parameter of M and get a new
model M’, the prediction made by M’ for S varies a lot compared
to M, then the uncertainty of the prediction made by M for S is
considered high (i.e., the prediction is likely to be unreliable). Fol-
lowing prior studies [5, 14, 21, 31, 37, 49], we applied 5 types of
uncertainty estimation methods in our framework. Based on these

methods, we will extract uncertainty metrics that can be used to
pinpoint unreliable predictions (see § 4.2).

(i) Epoch Ensemble: It refers to training a set of models, where
the models differ only in the training epochs from the Base Model.
Different epoch values are employed in the training process for the
underlying model, leading to some models might be under-fitting
and some might be over-fitting. In our setting, we integrated 5
members with different training epochs.

(ii) Variational Bayesian Inference (VBI): We develop a Bayesian
Neural Network (BNN) mirroring the architecture of the Base Model
(DNN). Based on the principle of Bayesian inference, the parameters
of the DNN are treated as random variables, conforming to the prior
distribution p(w). Thus, for each prediction, the parameters are
randomly selected from the distribution for each inference to infer
the results, and we conduct multiple predictions on the same sample
to quantify the uncertainty of that sample. In our experiments, each
sample is predicted 10 times (following the prior work [37, 47, 57]).
(iii) Monte Carlo (MC) Dropout: Adding a dropout layer before
the input of every layer is a key modification. This dropout opera-
tion is performed in both the training and inference phases. Because
some neurons are randomly discarded at the dropout layer, there
will be slight differences between model parameters in each infer-
ence. These differences will eventually lead to different predictions
for a certain sample. In our experiments, each sample is predicted
10 times (following the prior work [37, 43]).

(iv) Deep Ensemble: This constitutes an ensemble model that
aggregates n members. The difference between these members
stems from the different initialization parameters used for training.
Following the prior work [37, 50], we integrated 10 members.
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(v) Weighted Deep Ensemble (wEnsemble): It integrates n mod-
els and employs distinct initialization parameters, similar to Deep
Ensemble. Additionally, it dynamically adjusts the weights assigned
to each individual model during the training process. Except for
weighting, other settings are the same as Deep Ensemble.

4.2 Uncertainty-based Correction Model

In the second phase, we aim to automatically distinguish the reli-
able and unreliable predictions based on uncertainty metrics. Note
that, although we show that there is an obvious contrast between
correctly classified and incorrectly classified samples for some met-
rics (see § 3), it is hard or inaccurate to straightforwardly define a
threshold for correcting the prediction results. Thus, we formalize it
as a classification task, that we use a set of features (i.e., uncertainty
metrics) to train a model to classify whether a prediction result (of
the Base Model) is correct.

4.2.1 Feature (Uncertainty Metrics) Extraction. The outputs of the
uncertainty estimation methods in § 4.1.2 are a set of predicted
probabilities for each sample. The differences in these predicted
probabilities can be considered as a manifestation of the underlying
model’s prediction uncertainty. If the predicted probabilities for a
sample vary greatly, the underlying model has a high uncertainty
in the prediction of this sample, which means that this prediction
may be unreliable. We craft a number of metrics to measure the
uncertainty of the underlying model for those samples, which will
serve as features for training the Correction Model. We first resort
to metrics that are commonly used in existing work. However, since
the Android malware detection task is a binary-class classification
task, there are many metrics that we cannot directly use (they are
mostly used for multi-class classification tasks). As a result, we
chose three metrics that we could apply to our task, as detailed
below.

o Entropy:Itis defined as a measure of randomness or disorder of a

system. Given a set of predicted probabilities from an uncertainty
estimation method, the larger the entropy value, the more chaotic

the predicted probabilities, and the greater the uncertainty of the
underlying model’s prediction for the sample.

o Kullback-Leibler (KL) divergence: It is a measure of the dis-
similarity between two probability distributions. When applied
to a set of predicted probabilities, it is computed as the differences
between the distribution of predicted probabilities and the uni-
form distribution of their means. The greater the KL divergence,
the greater the uncertainty of the underlying model’s prediction.

e Standard deviation: It measures the dispersion of a dataset
relative to its mean and is calculated as the square root of the
variance. We calculate the standard deviation of each set of pre-
dicted probabilities. The larger the standard deviation, the greater
the uncertainty of the underlying model’s prediction.

In addition to the three widely used metrics mentioned above,
we also empirically design some statistical metrics that are derived
from the statistical properties as follows.

e sub(maximum,sec_maximum)? It is calculated by subtract-
ing the second-largest value from the largest value in a set of
predicted probabilities. A high sub(maximum,sec_maximum) in-
dicates a low uncertainty in the prediction of the underlying
model for the given sample.

e sub(maximum,median): It is not enough to subtract the second-
largest value from the maximum value. For example, if two mod-
els make incorrect predictions, the indicator of subtracting the
second largest value from the maximum value will become in-
valid and the information will be lost. This indicator describes
the difference between the maximum value and the median value.
If the value of this indicator is relatively small, it indicates that
at least half of the models have made the same prediction; If the
value of this indicator is relatively large, it can make up for the
defect of sub(maximum,sec_maximum), covering more than two
models making incorrect judgments

e sub(maximum,mean): This indicates the relationship between
the maximum value and the mean value. A smaller value of this
indicator indicates smaller uncertainty (all members of the model

2sub(a , b) implies a minus b.
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group give approximate prediction results); On the contrary, a
larger one indicates larger uncertainty (at least one model makes
a quite different judgment).
sub(median,mean): We use the threshold to determine the final
result of the sample, as long as the predictive value is greater
than 0.5, the sample will be classified into the same class, so
just taking the mean of the prediction results will lose a lot of
information. We can solve this problem by subtracting the mean
from the median. If an ensemble model with 5 members has a
prediction result of [1.00, 0.41, 0.42, 0.43, 0.44] for a sample, the
Base Model is very likely to classify it as benign software because
the prediction value is less than 0.5. However, if the average value
is greater than 0.5, it should be classified as malicious software.
Therefore, the larger this metric, the higher the uncertainty.
e sub(mean,minimum): This metrics is symmetrical with metrics
sub(maximum,mean).
e sub(median,minimum): This metrics is symmetrical with met-
rics sub(maximum,median).

As described in § 3, we have verified that the first three metrics
(Entropy, KL divergence, Standard deviation) can be used to distin-
guish incorrectly and correctly classified samples. Similarly, for the
other six uncertainty metrics adopted in our design, the differences
in their values for the correctly and incorrectly classified samples
with metrics of 0 are also more than 30%. Thus, we consider that
these uncertainty metrics can be used as indicators to differentiate
reliable and unreliable predictions.

4.2.2  Correction Model. We calculate the aforementioned uncer-
tainty metrics for each predicted sample. The samples are then
grouped into two sets, i.e., reliable or unreliable predictions. Sub-
sequently, the metrics are taken as features to train a machine
learning model which is designed to classify reliable and unreliable
predictions. This model is considered the “Correction Model”, as we
can modify the initial prediction results for those samples that are
classified as unreliable predictions by the model. Specifically, we
select four representative ML algorithms for the Correction Model,
which are Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Decision Tree (DT), and Random Forest (RF).

4.3 Result Correction

Given a set of test samples, we first get their prediction labels by the
Base Model. In parallel, we can determine whether the prediction
of the underlying model (i.e., Base Model) is reliable through the
Correction Model. Further, we seek to correct the predicted labels of
the Base Model based on the classification of the Correction Model.
Specifically, we have two strategies for the results.

o Correcting Unreliable Results: MALCERTAIN will correct all unreli-
able prediction results (i.e., the Correction Model classifies the
prediction results as “unreliable”).

o Correcting Unreliable FNs: In Section 3, we show that most of
the incorrect classifications are cases where malicious apps are
wrongly classified as benign apps, which indicates that the FNR
of the Base Model will be larger than the FPR. Thus, this strategy
corrects only potential FNs. Specifically, MALCERTAIN will correct
a prediction result only if the Correction Model classifies the
result as “unreliable” and the result is benign.
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5 EVALUATION

Our evaluations aim to assess the effectiveness of MALCERTAIN in
improving the performance of the existing DNN-based Android
Malware Detection Models. In particular, we seek to answer the
following research questions.

e RQ1: How effective is MALCERTAIN in improving the accuracy
of the Base Model on out-of-distribution (OOD) data?

e RQ2: How effective is MALCERTAIN in improving the accuracy
of the Base Model on adversarial examples?

e RQ3: How does the size and balance of the data used to train the
Correction Model affect the effectiveness of MALCERTAIN?

5.1 Evaluation Setup

We implement MALCERTAIN using the Tensorflow framework and
Tensorflow probability libraries, and train the models using GeForce
GTX TITAN X driven by CUDA.

5.1.1 Evaluation Methodology. To measure the effectiveness of
MALCERTAIN in improving DNN-based Android Malware Detection
Models, given a DNN model, we construct 3 models (a Base Model,
a Correction Model, and a Large Base Model) as follows:

o Base Model: we use a dataset (training set) to train a Base Model
and obtain some uncertainty estimation model ensembles.

e Correction Model: we use another dataset (correction training
set) and the predictions of the Base Models to train Correction
Models based on 4 ML algorithms (SVM, KNN, DT, RF).

e Large Base Model: we also merge the training set and the cor-
rection training set to train a Large Base Model.

We construct these 3 models to obtain an objective measurement
of MALCERTAIN’s effectiveness. While we can measure the improve-
ments by comparing the results of the Correction Model with the
results of the Base Model, this comparison is not entirely fair as the
Correction Model is trained using more data. Thus, based on the
recent approaches [27, 30, 51] that aim to address the conceptual
drift problem of DNN models using incremental training and re-
training, we further train the Large Base Model using the merged
dataset. We use the Base model and the Large Base Model as the
baseline models and compare their performances. Simply put, if the
detection results processed by the Correction Model outperform
the two baseline models, it is fair to say that our framework MAL-
CERTAIN effectively improves the performance of DNN models for
Android malware detection.

5.1.2  Evaluation Subject. We collect both malicious apps and real-
world benign apps to form our evaluation datasets. The malicious
apps are from the widely used malware datasets in our research
community, and they were collected independently with temporal
and distributional differences. The benign apps are collected from
Androzoo [1]. To further sanitize the benign datasets, we send these
apps to VirusTotal service for inspection and make sure that they
are not detected as malicious by any of the engines. In particular,
we divide the collected apps into 3 types of datasets:

e Training Set: This dataset is used to train the Base Models of
each DNN model and obtain a number of model ensembles (speci-
fied by different uncertainty estimation methods), which are used
to estimate the uncertainty of the predictions of the underlying
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Base Model. To the best of our knowledge, MalGenome [78]
and MalRadar [63] are the most reliable malware datasets in
our community as they were created by carefully examining
Android-related security reports and blog contents from estab-
lished antivirus companies and active experts. We therefore use
them to train the Base Model. Specifically, MalGenome contains
1,260 samples and MalRadar contains 4,534 samples, resulting in
a total of 5,794 malware samples from 196 unique families.
e Correction Training Set: This dataset is used to train a Cor-
rection Model. These samples are fed into the Base Models so
that they are grouped into two sets, i.e., correctly and incorrectly
classified. They are also fed into each model ensemble so that the
uncertainty metrics are computed for each sample (as features).
Specifically, the malware samples come from Drebin [3] which
contains 5,560 apps from 179 different malware families.
Test Set: This dataset is used to check the performance of the
detector before and after revising the prediction results, which
allows for evaluating the efficacy of the Correction Model. The
malware samples come from AMD [64], which contains 24,650
apps from 71 different malware families. We randomly select
2,000 malware samples that do not coincide with the Drebin
dataset.

As the three datasets were collected independently across dif-
ferent time span, which leads to an imbalance in the distribution
of samples across malware families. For example, for AMD, over
half of the samples are adware (e.g., Airpush, Dowgin and KuGuo).
However, for MalRadar, only about 0.06% are related to adware.
Following the definition of prior work [71], this contributes to the
problem of concept-drift among the three datasets.

5.1.3 Configurations. Without loss of generality, we select two
different DNN-based malware detectors as Base Models. The first
Base Model is DeepDrebin, which is an MLP model consisting of
two fully connected hidden layers with 200 neurons trained for 30
epochs. The second one is MultimodelDNN [32], which consists of
five headers and an integrated part. Each header is composed of two
fully connected layers containing 500 neurons, and the integrated
part is composed of a fully connected layer containing 200 neurons.
It is also trained for 30 epochs. All hyperparameters related to the
base model are consistent with those in the original papers.

For each Base Model, we compute several model ensembles ac-
cording to each uncertainty estimation method, including Epoch
ensemble, VBI, MC dropout, Deep Ensemble and wEnsemble. Specif-
ically, for Epoch Ensemble, we train five models with the same
parameter settings except for different training epochs ranging
from 10 to 50 (i.e., 10, 20, 30, 40, and 50 respectively). For MC
dropout, we add a dropout layer with a dropout rate of 0.4 into the
fully connected layer, convolution layer and LSTM layer. We have
integrated 10 member models. For VB, we sample the parameters
of full-connection layer or convolution layer (i.e. weight and devia-
tion) from the Gaussian distribution. The variables in the Gaussian
distribution are the mean and standard deviation, which are learned
through backpropagation. We finally integrated 10 member mod-
els. For Deep Ensemble and Weighted Deep Ensemble, we also
integrated 10 members respectively.
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5.1.4  Evaluation Metrics. We use the commonly used metrics (ac-
curacy and F1) to measure the effectiveness of the models. Accuracy
is a fundamental metric for assessing the overall performance of a
classifier. F1 is a robust metric that takes into account both preci-
sion and recall, offering a more comprehensive measurement when
dealing with imbalanced datasets. Additionally, as we observe that
the majority of misclassifications are cases where malicious apps
are misclassified as benign apps (i.e., FNR is much larger than FPR),
we considered an alternative strategy that modifies only false neg-
atives (FNs) in the process of correcting prediction results. Thus,
we also incorporate two metrics, “Acc@FN” and “F1@FN”, which
measure the accuracy and F1 of this alternative strategy.

5.2 RQ1: Improvement on Malware Detection

We first evaluate how well MALCERTAIN improves the performance
of the baseline models when detecting OOD examples. Table 1
shows the results. For DeepDrebin, the Base Model and the Large
Base Model have an accuracy of 71.2% and 83.68%, respectively.
The F1 scores are 60.49% and 80.81%, respectively. This indicates
that increasing the size of the training data can help improve the
model performances to some extent. After the result correction of
the Correction Model, the model accuracy is improved to 88.09%
and the F1 score is improved to 86.78% (using the SVM algorithm).

Moreover, when we adopt another strategy to modify prediction
results, i.e., modifying the prediction results only if they are consid-
ered as false negatives by the Correction Model (see Column “Acc
@ FN”), the accuracies of the models are improved to 84.01% (KNN
algorithm) to 89.06% (SVM algorithm). The F1 scores are improved
to 81.99% (KNN algorithm) to 88.04% (SVM algorithm). Compared
with the Base Models, MALCERTAIN can improve the accuracy by
21.0% (average of 4 algorithms), and improve the accuracy of the
Large Base Models by 3.0% (average of 4 algorithms). For the F1
score, the improvements achieved by MALCERTAIN are 49% and
4.79% (average of 4 algorithms), for Base Model and Large Base
Model, respectively.

As for MultimodelDNN, the Base Model and the Large Base
Model have an accuracy of 75.78% and 84.66%, F1 scores of 68.72%
and 81.62%, respectively. The best configuration is to use the DT
algorithm and the modification strategy of only modifying false
negatives. The accuracy can be improved to 86.85% and the F1 to
85.36%. Overall, the results show that MALCERTAIN works well
for the two kinds of Base Models. Their Correction Models can
effectively calibrate the unreliable predictions and thus improve
the performance of the Base Models in Android malware detection.

5.2.1 Performance of Correction Model. Our Correction Model
identifies the misclassified samples from the Base Model. For Deep-
Drebin, the Base Model incorrectly classified 1,151 samples. The
Correction Model flags a total of 793 samples, with 734 being true
misclassifications, achieving a precision of 92.56% (SVM algorithm).
Similarly, for MultimodelDNN, the Base Model misclassified 963
samples. Here, the Correction Model identifies 536 samples as “mis-
classified”, of which 476 are confirmed misclassifications, achieving
a precision of 88.81% (DT algorithm). The results show that our cor-
rection model achieves a high precision in identifying misclassified
samples, correcting over half of the misclassified samples.
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Table 1: Evaluation results of the Base Models, the Large Base
Models, and the Correction Models on out-of-distribution
(OOD) data. The best results are shown in bold.

DeepDrebin Acc F1 Acc @ FN F1 @ FN
Base Model 71.20%  60.49% - -
Large Base Model | 83.68% 80.81% - -
SVM | 88.09% 86.78% 89.06% 88.04%
Correction KNN | 83.16% 80.71% 84.01% 81.99%
Model DT | 84.18% 82.17%  85.66% 84.24%
RF 85.14%  83.36% 85.91% 84.49%

MultimodelDNN Acc F1 Acc @ FN F1 @FN
Base Model 75.78%  68.72% - -
Large Base Model | 84.66% 81.62% - -
SVM | 84.94% 82.61% 86.22% 84.37%
Correction KNN | 84.76% 82.79% 85.24% 83.49%
Model DT | 86.24% 84.51%  86.85% 85.36%
RF 85.84%  84.09% 86.22% 84.64%

Answer to RQ1: MALCERTAIN is applied on two different
malware detectors and achieves performance improvements
for both of them (by 21.0% on average). These results indicate
that MALCERTAIN can enhance the performance of the existing
DNN-based malware detectors by adjusting their prediction
results based on the uncertainty.

5.3 RQ2:Improvement on Adversarial Detection

We next evaluate how well MALCERTAIN improves the Base Models
in detecting adversarial samples. We collected adversarial Android
malware samples based on a new attack method called mixture of
attacks [36]. This attack method mutates training samples in both
the APK file space and the feature space and feeds these samples to
the attacked models to search for the samples that have the highest
probability to be classified as “benign”. Its supported mutation
operations include adding or removing features in the manifest files
(e.g., request extra permissions, state additional activities, services,
Intent-filter, etc.), adding junk code (e.g., null OpCode, debugging
information, dead functions or classes) to the .dex file, and flipping
values in the feature vectors. We collected two kinds of adversarial
samples: ‘Basic DNN’ (800 samples) and ‘AT-RFGSM’ (800 samples).
‘Basic DNN’ samples are generated by attacking a basic DNN-based
Android malware detection model, such as Drebin [3]. ‘AT-RFGSM’
samples are generated by attacking an enhanced DNN model that
incorporates adversarial training with the inner maximizer solved
by iterative FGSM using randomized “rounding”.

Table 2 shows the results of detecting adversarial samples. Both
DeepDrebin and MultimodeIDNN perform poorly in detecting ad-
versarial samples. For the ‘AT-RFGSM’ samples, the accuracies of
the Base Models are only 30.38% and 39.75%, and the F1 scores
are 46.60% and 56.89%, respectively. Even the Large Base Models
can achieve accuracies only around 63.88% and 60.75%, and the F1
scores around 77.96% and 75.58%. For the ‘Basic DNN’ samples, the
accuracy and the F1 score are almost zero. This is expected as these
samples are generated by mutating Drebin’s extracted features.
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Table 2: Evaluation results on adversarial samples.

DeepDrebin AT-RFGSM
Acc F1 Acc @ FN F1 @ FN
Base Model 30.38% 46.60% - -
Large Base Model | 63.88% 77.96% - -
SVM | 71.25% 83.21% 77.75% 87.48%
Correction KNN | 71.38% 83.30% 75.75% 86.20%
Model DT | 71.50% 83.38%  76.63% 86.77%
RF 72.25% 83.89% 78.63% 88.03%
. Basic DNN
DeepDrebin Acc F1  Acc@FN F1@EN
Base Model 0.00%  0.00% - -
Large Base Model | 0.00%  0.00% - -
SVM | 4.75% 9.07% 4.75% 9.07%
Correction KNN | 4.75% 9.07% 4.75% 9.07%
Model DT | 25.88% 41.11%  25.88% 41.11%
RF 13.25% 23.40% 13.25% 23.40%

AT-RFGSM

MultimodeIDNN — F1l Acc@FN F1@EN
Base Model 39.75% 56.89% - -
Large Base Model | 60.75% 75.58% - -
SVM | 75.63% 86.12%  87.13% 93.12%
Correction KNN | 73.75% 84.89% 86.25% 92.62%
Model DT | 78.75% 88.11%  87.75% 93.48%
RF | 78.88% 88.19%  87.63% 93.40%

. Basic DNN
MultimodeIDNN — - F1 Acc@FN F1@FEN
Base Model 0.00% 0.00% - -

Large Base Model | 0.13%  0.25% - -
SVM | 94.38% 97.11%  94.38% 97.11%
Correction KNN | 82.88% 90.64% 82.88% 90.64%
Model DT | 16.13% 27.77% 16.13% 27.77%
RF | 2.13% 4.16% 2.13% 4.16%

By using the Correction Model, MALCERTAIN can greatly im-
prove the detection accuracy against these adversarial samples.
For the ‘AT-RFGSM’ samples, by correcting all unreliable results,
MALCERTAIN can improve the F1 scores of the Base Models to
at least 83.21% (DeepDrebin, SVM algorithm) and 84.89% (Mul-
timodelDNN, KNN algorithm), achieving over 78.56% and 49.22%
improvements, respectively. By correcting only unreliable FNs, MAL-
CERTAIN can improve the F1 scores of the Base Models to at least
86.2% (DeepDrebin, KNN algorithm) and 92.62% (MultimodelDNN,
KNN algorithm), achieving over 84.98% and 62.86% improvements,
respectively. Correcting only unreliable FNs achieves slightly better
improvements than correcting all unreliable results. For the ‘Basic-
DNN’ samples, MALCERTAIN can improve the F1 scores ranging
from 9.07% to 41.11% on the DeepDrebin Base Model and ranging
from 4.16% to 97.11% on the MultimodeIDNN Base Model. Note
that the Correction Models trained by four machine learning algo-
rithms have comparable effectiveness in improving the accuracy of
detecting adversarial samples.

Answer to RQ2: We use 2 kinds of adversarial samples for de-
tection, and both the Base Model (accuracy being 0 to 39.75%)
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Table 3: Impacts of data balance and scales (DeepDrebin).
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Table 4: Impacts of data balance and scales (MultimodelDNN).

‘ DeepDrebin ‘ Base Model Acc: 71.20% ‘ ‘ MultimodelDNN ‘ Base Model Acc: 75.78% ‘
‘ Large Base Model Acc ‘ Data Ratio ‘ Algo. ‘ Acc ‘ Acc@FN ‘ ‘ Large Base Model Acc ‘ Data Ratio ‘ Algo. ‘ Acc ‘ Acc@FN ‘
[ unbal | bal [ unbal [ bal | - [ unmbal [ bal | unbal [ bal | [ unbal | bal [ unbal | bal | - [ unbal [ bal | unbal [ bal |

SVM | 88.09% | 88.76% | 89.06% | 90.39%
100% | 100% | KNN | 83.16% | 83.91% | 84.01% | 85.59%
83.68% 85.91%

(11320) | (4672) | DT | 84.18% | 80.31% | 85.66% | 84.64%
RF | 85.14% | 84.06% | 85.91% | 86.09%

SVM | 84.94% | 86.70% | 86.22% | 88.31%
100% | 100% | KNN | 84.76% | 82.77% | 85.24% | 86.72%
84.66% 84.03%

(11320) | (4672) | DT | 86.24% | 85.31% | 86.85% | 88.23%
RF | 85.84% | 85.19% | 86.22% | 88.23%

SVM | 88.41% | 88.14% | 89.36% | 89.94%
80% 80% | KNN | 84.28% | 83.91% | 84.69% | 85.41%
83.63% 82.68%

(9056) | (3738) | DT | 82.88% | 83.68% | 84.33% | 85.49%
RF | 84.81% | 84.18% | 85.46% | 86.31%

SVM | 84.63% | 86.14% | 85.89% | 88.11%
80% 80% | KNN | 84.66% | 83.48% | 85.04% | 86.29%
84.14% 80.48%

(9056) | (3738) | DT | 85.44% | 81.51% | 87.10% | 85.76%
RF | 86.32% | 84.43% | 86.47% | 86.62%

SVM | 88.11% | 87.89% | 89.52% | 89.92%
40% 40% | KNN | 84.43% | 84.48% | 85.04% | 86.24%
80.78% 81.71%

(4528) | (1868) | DT | 83.88% | 80.88% | 84.64% | 83.68%
RF | 84.99% | 85.59% | 85.44% | 87.19%

SVM | 84.73% | 83.83% | 86.24% | 86.37%
40% 40% | KNN | 84.73% | 85.14% | 85.14% | 86.37%
84.57% 84.41%

(4528) | (1868) | DT | 85.46% | 82.34% | 86.90% | 87.40%
RF | 85.51% | 83.07% | 86.09% | 87.98%

SVM | 87.79% | 86.44% | 89.06% | 89.14%
20% 20% | KNN | 84.86% | 85.34% | 85.44% | 86.59%
(2264) | (934) | DT | 87.04% | 83.11% | 88.81% | 85.09%
RF | 84.79% | 83.21% | 85.29% | 86.59%

82.21% 82.31%

SVM | 85.81% | 83.75% | 86.72% | 87.95%
20% 20% | KNN | 85.19% | 83.53% | 85.49% | 85.99%
83.80% 83.73%

(2264) | (934) | DT | 86.75% | 80.28% | 87.30% | 85.14%
RF | 85.54% | 82.37% | 85.76% | 86.77%

SVM | 89.94% | 85.51% | 88.04% | 87.79%
10% 10% | KNN | 84.76% | 85.14% | 84.66% | 86.11%
82.21% 82.26%

(1132) | (467) | DT | 80.56% | 79.93% | 83.66% | 83.61%
RF | 83.91% | 84.36% | 84.99% | 86.19%

SVM | 84.23% | 81.64% | 85.87% | 88.36%
10% 10% | KNN | 85.51% | 83.73% | 85.87% | 84.58%
82.02% 83.53%

(1132) | (467) | DT | 81.66% | 80.94% | 84.41% | 83.05%
RF | 85.61% | 82.87% | 86.70% | 85.59%

and the Large Base Model (accuracy being 0.13% to 63.88%)
perform poorly. MALCERTAIN can significantly improve their
detection effectiveness for both kinds of adversarial samples
(achieve over 85.5% to 158.8% improvements for AT-RFGSM
and over 2.13% to 94.38% improvements for Basic DNN).

5.4 RQ3: Impacts of Data Balance and Scale

In general, the number of samples that are correctly and incorrectly
classified by the Base Models differs greatly, where the number
of correctly classified samples is much higher than that of the in-
correctly classified samples. Therefore, in the process of training
the Correction Models, we face the problem of sample imbalance.
In order to understand the impacts of the data (im)balance and
the scale of the training dataset on the performance of the Correc-
tion Models, we further conducted a series of experiments using
balanced and unbalanced datasets with varied data scales.

As aforementioned, we use a correction training set containing
5,560 benign apps and 5,560 malicious apps. We first use all of the
samples to train the Correction Model. Since the number of correctly
and incorrectly classified samples by the Base Model is unequal
(70% versus 30%), these samples used for training the Correction
Models form the unbalanced dataset. Next, we construct 4 more
unbalanced datasets of smaller scales by randomly sampling 80%,
40%, 20%, and 10% from the unbalanced dataset. To obtain a balanced
dataset, as the number of incorrectly predicted samples is much
smaller than the number of correctly predicted samples, we use all
the incorrectly predicted samples and randomly choose an equal
number of correctly predicted samples. We then also construct 4
more balanced datasets of smaller scales by sampling 80%, 40%, 20%,
and 10% of the balanced. Finally, we train the Correction Models
using these 5 balanced datasets and 5 unbalanced datasets.

Table 3 and Table 4 show the impacts of data balance and scales
on the Correction Models based on Deepdrebin and Multimod-
elDNN, respectively. Overall, we can derive the following obser-
vations. First, the performances of the Correction Models are rela-
tively insensitive to the data balance. For example, comparing the
results with the same data scales in Table 3, we can see that the
Correction Models trained using the balanced datasets (columns
“bal”) generally have similar performances as those trained using
the imbalanced datasets (columns “unbal”). We observed that in
the unbalanced setting, fewer “incorrectly classified” samples are
flagged compared to balanced settings. This is attributed to the
unbalanced setting having more “correctly classified” training data,
skewing the model toward this category. While in the balanced set-
ting, the model flags more “incorrectly classified” samples, but finds
fewer “correctly classified” samples. Thus, the balanced setting’s
increased true positives and false positives balance out, resulting in
a similar overall accuracy as the unbalanced setting’s. Second, the
performances of the Correction Models are also insensitive to the
data scales. The performances of the Correction Models with the
data scales ranging from 10% to 100% are relatively close to each
other. For example, the improved accuracy of the SVM Correction
Model trained using 20% of the samples (87.79%) is close to that of
the Correction Model trained using all samples (88.09%). Although
the results in Table 4 show that the accuracies of the Correction
Models gradually decrease with the decrease of the data scale, the
differences are less than 5%. Thus, MALCERTAIN only needs 10% of
the samples to achieve reasonably good improvements.

Answer to RQ3: The scale of the correction training set and
the balance of the samples have no significant impacts on the
performance of the Correction Model. Thus, MALCERTAIN can
be tailored to datasets of small sizes (e.g., with only hundreds
of correction training samples).
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6 THREATS TO VALIDITY

First, in this paper, we select two widely used malware detectors for
our experiments and demonstrate the generality of the framework.
However, there are actually other DNN Android malware detec-
tor [7, 19, 38] in the research community that could be applied over,
Besides, the selected detectors cannot represent all the techniques
used in the DNN-based Android malware detection approaches.
Other detectors using more complex features and model structures
(e.g., CNN or LSTM) have not been used for the experiment. We
will try more DNN malware detection approaches in the future.

Second, we make efforts to incorporate different kinds of un-
certainty metrics to train the Correction Model. However, some
uncertainty metrics we design are relatively straightforward, e.g.,
sub(maximum, mean). Other uncertainty metrics can be quantified
and calculated as features to train the Correction Model. We fur-
ther need to quantify the importance of each feature (uncertainty
metrics), so as to improve our Correction Model.

Third, the current experimental results show that the improve-
ment of MALCERTAIN on the performance of Large Base Models is
not quite significant in some cases. To boost MALCERTAIN’s capabil-
ity, more effective uncertainty assessment methods can be explored
and more advanced techniques can be tried to train the Correc-
tion Model. Nevertheless, we show that it is a promising direction
to leverage prediction uncertainty to improve the performance of
DNN detectors, especially when handling adversarial samples.

7 DISCUSSION

Application and Generalization of the Approach. While our
design and experiments focus on DNN-based Android malware
detection, the proposed framework can be generalized to other ML-
based malware detection models. For example, for Reinforcement
Learning (RL) models, there are a number of methods for estimat-
ing uncertainty [25, 29, 40]. In future work, we plan to investigate
these methods to enable MALCERTAIN for RL models.In addition, the
proposed framework can be extended to other DNN-based classifi-
cation tasks, e.g., security-sensitive behavior classification [67, 68].
For multi-class classification tasks, although the basic framework
is applicable, we cannot directly use the existing strategy of flip-
ping the prediction label for each unreliable prediction to achieve
accuracy improvement. To generalize to multi-class classification,
some alternative strategies need to be devised (e.g., modifying the
predicted label to the second possible label).

ML Algorithms for the Correction Model. For the Correction
Model, we have chosen four commonly used machine learning
methods. Among them, the SVM algorithm achieves the best per-
formance, but it cannot scale well. The KNN algorithm performs
well in large-scale training sets, but it has a lower tolerance for noisy
samples. The decision tree algorithm is a lightweight algorithm, but
it suffers severely from model overfitting. The random forest algo-
rithm integrates multiple decision tree models, and can effectively
address the model overfitting. Our evaluation results demonstrate
that these algorithms can work effectively under the MALCERTAIN
framework. Nevertheless, there remain other machine learning al-
gorithms (e.g., MLP) that are more heavyweight and may achieve
better results. We plan to conduct more experiments to integrate
more effective machine learning algorithms into MALCERTAIN.
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Overhead of MALCERTAIN. MALCERTAIN employs five uncer-
tainty estimation methods and produces a collection of uncertainty
estimation models. Among them, the method based on Epoch En-
semble contains multiple base models with different training epochs,
the methods based on Deep Ensemble and Weighted Deep Ensem-
ble contain multiple base models with different initialization pa-
rameters, and the VBI and MC Dropout methods require repeated
inference for each sample. While they introduce more computa-
tional costs and require more storage resources in model training,
the training is a one-time effort and it is a worthwhile price to pay
for increased performance. The prediction time of our approach for
predicting a sample is about 0.0125s, which is still quite efficient
even though it is larger than the Base Model (0.00025s).

8 CONCLUSION

In this paper, we propose MALCERTAIN, a general optimization
framework to improve the performance of DNN models for An-
droid malware detection. We first conduct a characteristic study to
understand how these DNN models are impacted by OOD samples
that are often observed in zero-day malware or adversarial samples.
We further adopt widely used uncertainty estimation methods and
design a number of metrics to distinguish correctly-classified and
incorrectly-classified samples based on their prediction uncertain-
ties. Based on these metrics, we train an effective Correction Model
to fine-tune the prediction results of DNN detectors. Extensive ex-
periments indicate that MALCERTAIN is capable of improving the
performance of existing DNN models for Android malware detec-
tion, and can significantly improve the detection effectiveness of
adversarial samples.
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