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The prosperity of the cryptocurrency ecosystem drives the need for digital asset trading platforms. Beyond
centralized exchanges (CEXs), decentralized exchanges (DEXs) are introduced to allow users to trade cryp-
tocurrency without transferring the custody of their digital assets to the middlemen, thus eliminating the
security and privacy issues of traditional CEX. Uniswap, as the most prominent cryptocurrency DEX, is
continuing to attract scammers, with fraudulent cryptocurrencies flooding in the ecosystem. In this paper, we
take the first step to detect and characterize scam tokens on Uniswap. We first collect all the transactions
related to Uniswap V2 exchange and investigate the landscape of cryptocurrency trading on Uniswap from
different perspectives. Then, we propose an accurate approach for flagging scam tokens on Uniswap based
on a guilt-by-association heuristic and a machine-learning powered technique. We have identified over 10K
scam tokens listed on Uniswap, which suggests that roughly 50% of the tokens listed on Uniswap are scam
tokens. All the scam tokens and liquidity pools are created specialized for the “rug pull” scams, and some scam
tokens have embedded tricks and backdoors in the smart contracts. We further observe that thousands of
collusion addresses help carry out the scams in league with the scam token/pool creators. The scammers have
gained a profit of at least $16 million from 39,762 potential victims. Our observations in this paper suggest the
urgency to identify and stop scams in the decentralized finance ecosystem, and our approach can act as a
whistleblower that identifies scam tokens at their early stages.
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1 INTRODUCTION
Cryptocurrencies have seen significant growth in recent years due to the rapid development of
blockchain technologies and the digital economic system. By the end of July 2021, the global
cryptocurrency market capitalization reaches over $ 1.5 trillion [26]. Thousands of cryptocurrencies
and decentralized applications (DApps) are emerging in the ecosystem.

The prosperity of the cryptocurrency ecosystem drives the need for digital asset trading platforms.
Thus, hundreds of cryptocurrency exchanges are emerging to facilitate the trading of digital assets.
Cryptocurrency exchanges can be categorized into two types: centralized exchange (CEX) and
decentralized exchange (DEX). CEX, as the traditional trading mechanism, requires a central
entity as the intermediary to complete cryptocurrency trading between its users. Therefore, the
trustworthiness of the middlemen plays a vital role in this trading mechanism, as all the user
activities and digital assets are under the control of the central operators1. Security and privacy issues
of CEXs are reported from time to time [27–29]. To facilitate free trading and eliminate the potential
security and privacy issues, DEX is introduced to allow users to trade their cryptocurrencies without
transferring the custody of their cryptocurrencies to the middlemen, thereby mitigating the security
issues of CEX and providing better privacy by eliminating KYC verification.

Uniswap is one of themost prominent cryptocurrencyDEXs built atop the Ethereum blockchain [19].
Unlike most exchanges, which match buyers and sellers to determine prices and execute trades,
Uniswap adopts the automated market maker (AMM) model [22]. This model involves smart con-
tracts creating liquidity pools of cryptocurrencies that are automatically traded based on pre-set
algorithms. As a DEX, anyone can use the pools to swap between cryptocurrencies for a small fee.
In addition, users can also be liquidity providers by depositing cryptocurrencies into the liquidity
pools and earn said swap fees as incentives. By the time of this study, Uniswap has amassed total
market liquidity of over $ 1.6 Billion, with over $ 200 Million trading volume per day [30].

Where there is money, there are those who follow it. The growing popularity of Uniswap is continu-
ing to attract scammers. Uniswap does not maintain any rules or criteria for cryptocurrency listing,
meaning that anybody can list a token on the exchange. Thus, scammers take the opportunity to list
scam cryptocurrencies to trick unsuspecting users. It was reported that some scam cryptocurrencies
impersonate token sales for popular cryptocurrency projects [7, 13, 31]. For example, on August
19th 2020, the upcoming DeFi lending protocol Teller Finance tweeted that a fake Teller token
and a scam Uniswap pool had been created, and many users were cheated.
Despite this, to the best of our knowledge, no previous studies have systematically characterized

or measured scam tokens on Uniswap. We are unaware of to what extent scam tokens exist on the
Uniswap exchange, and how much impact they introduced to the overall ecosystem.

This Work. In this paper, we take the first step to detect and characterize scam tokens on
Uniswap. We first collect all the transactions related to the Uniswap exchange, and investigate
the landscape of Uniswap from different perspectives (see Section 3). Then, we propose a hybrid
approach for flagging scam tokens and scam liquidity pools on Uniswap accurately (see Section 4).
We manually label a scam token benchmark dataset, and identify features that can be used to
distinguish them. Our detection approach is powered by a guilt-by-association based expanding

1Most CEXs have adopted Know Your Customer (KYC) verification to prevent money laundering and other financial crimes.
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method, and a machine-learning based detection and verification technique. We have identified
over 10K scam tokens and pools in total (which is a lower-bound), meaning that roughly 50% of
tokens listed on Uniswap are scam tokens. At last, we demystify these scam tokens from various
perspectives, including the scam behaviors, the scammers, and the impact (see Section 5). Beyond
the scam tokens and their creators, we further identify over 40K collusion addresses controlled by
the scammers, which are used to facilitate the success of the scams. We show that, the scammers at
least profit $16 million from roughly 40K potential victims on Uniswap.

We make the following main research contributions in this paper:
• We are the first to propose a reliable approach for identifying scam tokens and their associated
liquidity pools on Uniswap. We first make effort to contribute by far the largest scam token
benchmark dataset, and then we propose a guilt-by-association based expansion method and
a machine-learning based classifier to identify the most reliable scam tokens.

• We identify over 10K scam tokens and scam liquidity pools, revealing the shocking fact that
Uniswap is flooded with scams. We believe the scams are prevalent on other DEXs and DeFi
platforms, due to the inherent loose regulation of the decentralized ecosystem.

• We systematically characterize the behaviors, the working mechanism, and the financial impacts
of Uniswap scams. We observe that scammers usually employ multiple addresses to carry out
a scam, and thus we design a method for detecting the collusion addresses to gain a deep
understanding of the scams. We have identified 70, 331 scam addresses in total, including
41, 118 collusion addresses. The scammers have gained at least $16 millions.

This is the first in-depth study of Uniswap scams at scale, longitudinally and across various
dimensions. Our results motivate the need for more research efforts to illuminate the widely unex-
plored scams in the decentralized finance ecosystem. We advocate stakeholders in the ecosystem
work together to eliminate the impact caused by scam tokens. Basically, a cryptocurrency reputation
system is needed, and our approach can be adopted to identify scam tokens at their early stages.
Blockchain services like wallets and exchanges should provide useful front-end to warn users when
they try to engage with the high-risk tokens. Further, investors and Defi project teams should be
aware of the scam tokens and rely on trusted sources to make decisions.

2 BACKGROUND
2.1 Blockchain and Ethereum
Blockchain is a shared, immutable, and distributed ledger that facilitates the process of recording
transactions and tracking assets in a P2P network [4]. It is resistant to data modification due to the
cryptographic design. By this design, each transaction in the block is verified by the confirmation
of most participants in the system. Bitcoin network is the first blockchain-based decentralized
system, which demonstrated the feasibility to construct a decentralized value-transfer system that
can be shared across the world and virtually free to use.

Following the growth of cryptocurrencies, developers started to explore the feasibility of decen-
tralized applications (DApps) [6]. This leads to the development of Ethereum [10], an open-source
decentralized blockchain platform featuring smart contract functionality. Ether (ETH) is the official
cryptocurrency on Ethereum, which is mined by Ethereum miners as a reward for computations.
ETH is the second largest cryptocurrency based on the market cap [26].

2.2 Ethereum Accounts and Transactions
2.2.1 Accounts. In Ethereum, an account is a basic unit to identify an entity. An account is identified
by a fixed-length hash-like address. Accounts can be user-controlled or deployed as smart contracts.
For the accounts that are controlled by users, i.e., by anyone with private keys, they are called
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external owned accounts (EOAs). The accounts controlled by code are called contract owned accounts
(COAs). Both kinds of accounts have the ability to send, receive, hold ETH and tokens, or interact
with deployed smart contracts. The key difference is that, only an EOA can initiate transactions
while a COA can only send transactions in response to receiving transactions.

2.2.2 Transactions on Ethereum. A transaction refers to an action initiated by an EOA and it is
the way that users interact with the Ethereum network. A transaction is used to modify or update
the state stored in the Ethereum network and it requires a fee and must be mined to become
valid. A transaction can include binary data (called the “payload”) and Ether. If a transaction is
sent from an EOA to another EOA, the transaction is called “external transaction”, which will be
included in the blockchain and can be obtained by parsing the blocks. The other type of transaction,
initiated by executing a smart contract, is called “internal transaction”. Internal transactions are
usually triggered by external transactions and are not stored in the blockchain directly. When smart
contracts are involved in a transaction, multiple events that log the running status of contracts
could be emitted for developers and DApps to track the behavior of these contracts.

2.3 Smart Contract and ERC-20 Token
2.3.1 Smart Contract. A smart contract is a computer program or a transaction protocol that can
execute automatically with the terms of the agreement written in the contract code. The contract
code controls the execution, and the corresponding transactions can be tracked but cannot be
reversed. Ethereum implements a Turing-complete language on its blockchain, and now it is the
largest blockchain platform that supports smart contracts with millions of deployed smart contracts.

2.3.2 ERC-20 Token. In contrast to digital coins like Bitcoin and Ether, which are native to their
own blockchain, “tokens” require existing blockchain platforms. On the Ethereum platform, there
are over 400K tokens by the time of this study, and most of them are smart contracts following the
ERC-20 standard2, which specifies a list of rules and interfaces that tokens should follow. Some
of these rules include the total supply of the tokens, how the tokens are transferred and how the
transactions are approved, etc. Note that, Ethereum does not enforce any restrictions on the names
and symbols of tokens, which may open doors for scammers to abuse the ERC-20 tokens. We will
show that, due to the less regulation of Uniswap and Ethereum, scam ERC-20 tokens are prevalent
in the ecosystem (see Section 4 and Section 5). To remove ambiguity, in this paper, we will describe
a token in the form of “name (symbol)” with a footnote of token address.

2.4 DEX, AMM, and Uniswap
2.4.1 Decentralized Exchange. Due to the open-source and decentralized nature of cryptocurrencies,
it is demanded that the exchange of cryptocurrencies should have no central authorities involved,
and thus decentralized exchanges (DEXs) are born. A blockchain-based DEX does not store user
funds and personal data on centralized servers, but instead matches buyers and sellers of digital
assets through smart contracts. DEXs are an important part of the burgeoning DeFi ecosystem.

There are multiple kinds of DEXs. The first generation is order-based P2P exchange, which uses
order books. These order books compile a record of all open buy and sell orders for a particular asset.
For example, dYdX [8], IDEX [14], and EtherDelta [9] fall to this category. The second generation is
a liquidity pool based exchange that completes trades through automated market makers (AMMs).
The representative ones are Uniswap [19], Bancor [2], and Balancer [1].

2.4.2 Automated Market Makers. Automated market makers (AMMs) allow digital assets to be
traded without permission and automatically by using liquidity pools instead of a traditional market
2ERCs stands for Ethereum Requests for Comments, which are technical documents used by smart contract developers.
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Fig. 1. Interacting with Uniswap V2 and the major participants.

of buyers and sellers. On the AMMmarkets, users trade against a pool of tokens, i.e., a liquidity pool.
Users can supply tokens into the liquidity pools and the price of tokens in the pool is determined
by a mathematical formula. Liquidity providers normally earn a fee for providing tokens to the
pool, and the fee is paid by the traders who interact with the pool.

2.4.3 Uniswap. Uniswap is a leading DEX built atop Ethereum designed to facilitate automated
exchange transactions between ETH and ERC-20 tokens, providing liquidity automatically on
Ethereum. Uniswap is the largest decentralized exchange and the fourth-largest cryptocurrency
exchange overall by daily trading volume by the time of this study.

Uniswap V1, the first version of the protocol, was created in November 2018 by Hayden Adams,
and it supports all the ETH to ERC-20 liquidity pools and enables swaps between ERC-20 tokens
via ETH. In May 2020, Uniswap launched its V2 version with many new features and optimizations.
For example, it uses WETH (Wrapped ETH, an ERC-20 token that represents ETH 1:1) instead
of the native ETH in its core contracts and enables direct ERC-20 to ERC-20 swaps, thus halving
the fees when performing such transactions. Also, it enables non-standard ERC-20 tokens such as
USDT and BNB, which opened up the potential market. Furthermore, the Uniswap V2 introduces
“flash swap”, which allows users to borrow tokens from a Uniswap pool, perform some activities
with external services and pay back these tokens, like flash loans. These changes set the stage for
exponential growth in AMM adoption. In May 2021, Uniswap V3 was launched, which provides
new features like concentrated liquidity and multiple fee tiers, making the protocol more flexible
and efficient. Since Uniswap V3 was just launched and these three versions of Uniswap operate
independently, Uniswap V2 remains the most popular one by the time of this study, with a large
number of tokens locked in it. Although our study in this paper is focused on Uniswap V2, the
observations and implications are applicable to other versions of Uniswap and other DEXs.

2.5 Interacting with Uniswap
Users can interact with Uniswap through three kinds of operations, i.e., creating a liquidity pool,
adding/removing liquidity, and swapping tokens. The general process is shown in Figure 1.

2.5.1 Creating the liquidity pools. In Uniswap, users trade against liquidity pools. A liquidity pool
is a trading venue for a pair of ERC-20 tokens. One can create a liquidity pool that does not exist
by interacting with Uniswap V2 contracts.
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2.5.2 Adding/removing liquidity. After the pool is created, users can add liquidity by depositing
the pair of two tokens in the pool. The users who add liquidity to the pool are called liquidity
providers (LPs for short) and they will receive liquidity provider tokens (LP tokens for
short). A “mint” event will be emitted when liquidity is added. Whenever a trade occurs, a 0.3%
fee is charged to the transaction sender. This fee is distributed pro-rata to all LPs in the pool upon
completion of the trade, which stimulates people to provide liquidity.

In order for the pool to begin facilitating trades, someone must seed it with an initial deposit of
each token after a pool’s creation. Thus, the pool creator will usually add the first liquidity when
creating the pool. According to the documents of Uniswap [16], if the first LP supplies 𝑥 A tokens
and 𝑦 B tokens, he will receive 𝑙 = √

𝑥 ∗ 𝑦 LP tokens and the total supply of the pool token is 𝑙 . If
there are already 𝑥 A tokens and 𝑦 B tokens in the pool, the new LP could supply 𝑥 ′ A tokens and
𝑦

′ B tokens based on the current ratio and he will receive 𝑙 ′ = 𝑙 ∗ 𝑥
′

𝑥
LP tokens and the total supply

of LP token changes to 𝑙 + 𝑙 ′ .
The LPs could also remove liquidity from the pool by burning their LP tokens. After removing

the liquidity, they can receive the pair of tokens based on the LP tokens they burn and the current
token supply in the pool. A “burn” event will be emitted when LP tokens are burned. For example,
if there are 𝑥 A tokens and 𝑦 B tokens in the pool and the total supply of LP token is 𝑙 , when an
LP burns 𝑙 ′ LP token, he will receive 𝑥 ′ A tokens and 𝑦′ B tokens where 𝑥

′

𝑥
=

𝑦
′

𝑦
= 𝑙

′

𝑙
and the total

supply of LP tokens will be 𝑙 − 𝑙
′ .

2.5.3 Swapping tokens. When a user wants to trade a pair of tokens in a pool, the user will first
send tokens to the pool. Then the pool will calculate the exchange rate and send the target tokens.
The exchange rate is determined by the “constant product” formula 𝑘 = 𝑥 ∗𝑦, where 𝑘 is a constant
and 𝑥,𝑦 are the reserve balance of two tokens in the pool. In a swap transaction, the LP token will
not change and a “swap” event will be emitted. For example, if the pool has 𝑥 A tokens and 𝑦 B
tokens and the user sends 𝑥 ′ A tokens for B tokens. The swap will follow Eqn. (1):

𝑥 ∗ 𝑦 = (𝑥 + 𝑥
′ ∗ 0.997) ∗ (𝑦 − 𝑦

′), (1)

where 0.997 implies the 0.3% of fee set by Uniswap and 𝑦′ will be the quantity of B tokens the user
gets. Due to this formula, one token’s price in the pool will rise when people are swapping the
other token for this one.

3 GENERAL OVERVIEW OF THE UNISWAP EXCHANGE
3.1 Dataset Collection
3.1.1 Collection Method. We utilize The Graph [5], a sandbox for querying data and endpoints
for blockchain developers, to collect transaction events (i.e., mint, swap, and burn events) related
to Uniswap. It provides a snapshot of the current state of Uniswap and also tracks the historical
data. Note that an Ethereum transaction can emit multiple events including Uniswap-related events
and other events, but The Graph only records all data related to Uniswap events. Moreover, some
important information is not recorded in the log. For example, when a user interacts with the
Uniswap router contract for trading some tokens to Ethers (not WETH), the router contract will
transfer the tokens on behalf of the user, exchange the WETH to Ethers, and transfer the Ethers
to the user. Thus, the log will record the router contract as the swap event receiver instead of the
user. As we need to analyze the detailed token transfer flow of transactions related to Uniswap
for characterizing the scam token activities in Section 5, we further fetch the whole transaction
information related to events on Uniswap, e.g., the amount of ETH transferred, input data, internal
transactions, and all event logs.
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Table 1. Dataset Overview.

Data Type # of Entities Event Type # of Events

Token 21,778 Mint 804,077
Pair (pool) 25,131 Burn 415,919
Events 20,306,762 Swap 19,086,766

3.1.2 Dataset Overview. We have synchronized all the tokens and events from May 5th 21:00
UTC to December 6th 18:00 UTC, 2020. Table 1 shows an overview of our dataset. Since the first
transaction which created USD Coin (USDC)-Wrapped Ether (WETH) liquidity pool happened on
May 5th, 2020, there are over 20 million transaction events on Uniswap V2 by the time of this study.
There are 21, 778 kinds of tokens and 25, 131 liquidity pools in total.
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Fig. 2. The general trend of Uniswap V2 from May 2020 to December 2020 (daily).

3.2 The Rising of Uniswap
Figure 2 (a) shows the daily token listing (i.e., appear on Uniswap, not token creation) and liquidity
pool creation on Uniswap. After three months of the launch of Uniswap V2, there are roughly over
100 tokens and liquidity pools listed on Uniswap daily. It witnessed the spike of tokens and pairs
(pools) on Uniswap in October 2020, when 6, 677 tokens were added and 7, 546 pools were created
in this month. Figure 2 (b) shows the number of transaction events relevant to Uniswap. Since its
launch, Uniswap attracted great attention quickly. It remains roughly 200K transaction events daily
by the time of this study. For example, on October 6th, there were 207, 338 transaction events on
Uniswap with 2, 288 pairs traded. It is not surprising to see swap transactions, as a major function of
Uniswap, account for 94% of the total events. Figure 2 (c) shows the daily volume and total liquidity.
After August 7th, the daily volume exceeded $100 million. The liquidity of Uniswap reached $3.4
billion on 13th November and dropped due to the end of Uniswap (UNI) liquidity program [20]3.
Nevertheless, by the time of this study, there were still over $1.7 billion worth of tokens locked in
Uniswap V2.

3.3 The Liquidity Pools and Tokens
3.3.1 Liquidity Pools. We observe that over 90% (22, 660) of the liquidity pools have a value of
less than 1 USD locked in Uniswap, which means that these pairs have low levels of liquidity
on Uniswap or have low values. For example, although the pool LiquidityBomberB (LBB)-
LiquidityBomberA (LBA)4 has a large number of tokens (1 × 1012 tokens), both of them have no
3In this program that ended on November 17th, users can earn UNI by adding liquidity to the 4 major liquidity pools.
4LP token address:0xa0f198fc128b83c5f71cc61d105adf6c7d6fd88f
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value at all. The pair with the largest USD liquidity is Wrapped Bitcoin (WBTC)- Wrapped Ether
(WETH)5, which locks over 195 million USD on Uniswap. Consequently, Uniswap only records
the trade volume of pools with a certain level of liquidity, and over 95% of the liquidity pools’
volume is not recorded by Uniswap due to the lack of liquidity. Figure 3 shows the distribution
of transaction and trading volume for 1, 128 liquidity pools that have recorded trade volumes on
Uniswap. They have a total trading volume of over $41 billion. Obviously, it follows the typical
Power-law distribution, i.e, the top 1% of liquidity pools occupy over 65% of the transaction events
on Uniswap. Figure 4 shows the top-10 popular liquidity pools on Uniswap ranked by the transaction
events. It can be seen that, stablecoins (e.g., Tether (USDT), USD Coin (USDC), Dai (DAI)) and
Uniswap governance tokens (i.e., Uniswap (UNI) token), often have large popularity.
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Figure 5 shows the distribution of the involved address for each liquidity pool, which reflects
the attention from investors. Over 70% of the liquidity pools have been involved by less than 20
addresses and over 70% of the liquidity pools have only 1 liquidity provider. As opposed to it, the 5
popular pairs all have more than 10K liquidity providers and the Wrapped Ether (WETH)- Tether
(USDT) liquidity pool has more than 80K addresses involved.

3.3.2 Tokens on Uniswap. From the perspective of ERC-20 tokens, the top 1% of the tokens occupy
over 80% of the transactions and involve in over 96% of the trading volume on Uniswap, which
follows the Power-law effect as well. When considering popular tokens with the most number of
liquidity pools, the stable coins also take the lead. Over 90% (19,790) of the tokens only have one
pair. In total, WETH is paired with over 20,924 tokens (83.2% of all liquidity pools), followed by
USDT (1,049), USDC (462), DAI (406), and UNI (253).

3.4 Pool Creators and Investors
3.4.1 Pool Creators. All the 25, 131 liquidity pools analyzed were created by 17, 053 addresses.
Among them, 3, 046 addresses had created at least 2 liquidity pools and 120 addresses created
more than 10 pools. For example, the address 0x3bcfa9357ab84baec04313650d0eebb3fd51070d
created 91 liquidity pools and most of them are pairs of WETH and DeFi-related tokens such as
“Keep3r”, “Wootrade Network”, “Aegis.finance”, etc. Due to the massive pool creation for various
DeFi tokens, the address is suspicious to be a scammer and these pools are likely to be used in
scams. We will further analyze these scams in Section 5.

3.4.2 Investors. In total, 548, 609 addresses have participated in the transactions collected in this
study on Uniswap (i.e., the addresses that had mint, swap, burn transactions on Uniswap). Over 70%
(387, 885) of the addresses only participate in swap transactions, and 5% (27, 644) of the addresses only

5LP token address:0xbb2b8038a1640196fbe3e38816f3e67cba72d940
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focus onmint and burn transactions.We also find that 80% of the investors have less than 15 Uniswap
transactions, suggesting most of them are inexperienced on Uniswap. Nevertheless, we observe that
many investors have thousands of transactions. For example, the address 0x80c5e690836 has the
most mint transactions, and it has added liquidity 18, 276 times on 209 pairs. We further analyze the
interacted liquidity pools of these participants. Roughly 45% (245, 417) addresses have transactions
with only one pool, and over 90% (494, 755) of the addresses have transactions with less than 15
pools. However, 27 addresses have interacted with over 1K pools. We manually inspect them and
find that they are likely to be trading bot contracts engaged in arbitrage activities due to their
repeated trading behaviors.

3.5 Summary
Uniswap has attracted a large number of tokens and created a prosperous trading environment.
Nevertheless, there are many liquidity pools that were not created for long-term uses, since they
have a low level of liquidity and only a few users joined in the trading activities of these pools.
Most of the participants are new to Uniswap. The explosion of DeFi projects may attract these
inexperienced investors, which can also be exploited by attackers.

ɠCreate 
DWAP Token
at 06:07:07

ɡMint 
500K DWAP & 70 ETH 

at 06:10:30

Attacker
0xac830c…

ɣBurn
218K DWAP & 161.7 ETH

at 06:25:14

ɢ6ZDS�(7+�IRU�
':$3

Liquidity 
Pool

0x5de739…

Participants
DWAP Token
0x05c1ad…

Fig. 6. A motivating example of a scam token Deriswap (DWAP).

4 IDENTIFYING SCAM TOKENS ON UNISWAP
4.1 A Motivating Example
As a decentralized exchange, Uniswap does not enforce any rules for token listing, i.e., anyone
can list a token and create a liquidity pool freely. Thus, scammers can take the opportunity to list
scam tokens to cheat unsuspecting users. In this study, we find that there are many tokens with
same/similar names, which are highly suspicious to be scams. More and more evidence shows
that scam tokens have appeared on Uniswap. For example, on Nov 23th 2020, shortly after Andre
Cronje, the famous Yearn Finance (YFI) creator, announced his new DeFi project Deriswap, attackers
created a fake token Deriswap (DWAP)7 and a liquidity pool had been created on Uniswap [12].
The whole process of this scam is shown in Figure 6. The scammer8 adds liquidity with 70 ETH
and 500K DWAP tokens initially, and later removes liquidity of 217K scam tokens and 161.7 ETH.
The attacker profits roughly 90 ETH (roughly $54K)9 considering the fee and swap cost. It is very
60x80c5e6908368cb9db503ba968d7ec5a565bfb389
7Token address:0x05c1ad0323b3f7f25cff48067fa60fa75dc7ba4f
8Address:0xac830c76fc37ef3dd4c28c9b7ee548d1a46112eb
9Since the prices of tokens fluctuate every day, we calculate the profit of these scam tokens according to the price of top 50
tokens on December 6th 2020 on Uniswap. It applies to all remaining content.
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surprising to see that, the whole process from the token creation to the withdrawal only took under
20 minutes. It is a common type of scam called “Rug Pull” in Uniswap, which will be detailed in
Section 5. This makes us wonder how many scam tokens/pools are listed and to what extent they
have an impact on the investors. Thus, in the following, we develop a reliable approach to identify
scam tokens/pools on Uniswap, and further characterize them.

Our Scam Token Detection FrameworkBasic Data

Transaction
Information

All Tokens

Uniswap
&Geth API

 Ground Truth
Labelling

Ground Truth 
Tokens

Machine Learning based Detection 
and Verification

Machine 
Learning
Model

Verified Scam 
Tokens

Heuristics

Guilt-by-association based Expanding
Scam Token

Dataset

Created/
Minted by

Fig. 7. The workflow of detecting scam tokens on Uniswap.

4.2 Approach Overview
4.2.1 Key Idea. Our preliminary exploration suggests that scammers usually list tokens and pools
that look very similar to the existing cryptocurrency projects, due to the less regulation of both
Uniswap and Ethereum. The targeted projects are usually official tokens (e.g., USDT) that have
been already released on Uniswap, or famous DeFi projects that are looking to conduct a token
sale. Further, the scam pools are usually short-lived, as the scammers would remove liquidity soon
when there are victims falling into the traps. It suggests that the scam tokens and liquidity pools
have quite unique features when compared with other normal tokens/pools, and these features can
be used to distinguish scam tokens from the normal ones.

4.2.2 Overview of our approach. The overall workflow of our scam detection framework is shown
in Figure 7, which is made up of three major components. (1) Ground truth labelling component
is used to collect official (normal) tokens and the most reliable scam tokens (i.e., the fake tokens
whose names or symbols are identical with the official ones). The labelled ground truth dataset is
used as the seeds for further expansion. (2) Guilt-by-association based expansion component is used
to enlarge our labelled scam token dataset based on two reliable heuristics. (3) Machine learning
based scam detection and verification component is used to identify more scam tokens based on
the features learnt from our labelled dataset. To eliminate potential false positives, we use a strict
verification strategy to only label the most reliable scam tokens. Note that, guilt-by-association
based expansion would be further applied to the identified new scam tokens, and produce our final
results. Our approach considers both the naming characteristics and the transaction behaviors of
scam tokens. Further, our approach is powered by the strict verification strategy, and thus it can
produce the most reliable results.
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4.3 Ground truth labelling
4.3.1 Official tokens. We first collect a list of popular tokens from the CoinMarketCap [26] ranking
list, and the Etherscan [11] ranking list, and then use the following method to manually verify them.
The popular official tokens usually have been listed on large CEXs (i.e., they have been verified
by the operators of CEXs), with the exchange rates for US dollars. Since some official tokens may
migrate from old addresses to new addresses (e.g., due to security issues), we further flag those old
token addresses as official ones too. Through this way, we collect 2, 397 official tokens in total.

4.3.2 Scam tokens. We label the scam token seeds in two ways. First, as Ethereum does not enforce
any restrictions on the names and the symbols of the newly created tokens, some fake tokens
use identical identifier names to imitate the official tokens to trick victims by means of airdrop
scam and arbitrage scam [50]. By comparing the token names and the symbols of all the ERC-20
tokens in Uniswap with the labelled official tokens, we have flagged 4, 017 fake tokens. Further, as
Etherscan usually marks phishing or scam tokens, we implement a crawler to collect the tags of
tokens, which collects 31 more scam tokens.
In total, our ground truth labelling phase has collected 6, 445 tokens in total, with 2, 397 official

tokens and 4, 048 (=4, 017 + 31) scam tokens.

4.4 Guilt-by-association based expansion
Empirically, scammers usually create more than one scam tokens to expand the scale of their
scam campaigns. Therefore, we mark all Ethereum accounts that have created a scam token or a
liquidity pool (i.e., the pool that trades scam tokens) in our labelled dataset as scam creators. For
other tokens/pools created by these scam creators, they are highly suspicious to be scam tokens as
well. We call this strategy “Guilt-by-association”, which has been used in previous work to identify
malicious domains and malware [54, 63]. In particular, this strategy could also help us find new
emerging scam tokens released by the same scam attack campaigns, even with no users fallen into
the scams yet (i.e., no or few transactions).

4.4.1 Expansion based on scam token creators. After excluding 7 addresses that are tagged by
Etherscan as Contract Deployer10, 2, 972 scam creators are marked. We then identify all the tokens
created by these scam creators and obtain 2, 424 new candidate scam tokens. We then manually
verify a portion of popular tokens (i.e., have more than 1, 000 transactions) and less popular tokens
(i.e., have less than 1, 00 transactions) to verify the reliability. Specifically, we search the tokens
on Google to check whether the official websites exist, and whether there are scam accusations
on BitcoinTalk and other forums, etc. Among 2, 424 candidates, 28 of them have more than 1, 000
transactions. We have manually verified these 28 popular tokens alongside 50 tokens with few
transactions (10 to 100) and find no false positives, which suggests the reliability of our heuristics.

4.4.2 Expansion based on scam pool’s creator and first mintor. The Ethereum account which creates
the scam liquidity pool (i.e., the liquidity pool reserves a pair consisting of the scam token and
other token) and firstly adds liquidity to the scam pool is marked as a scam creator as well. In this
way, we flag 2, 985 scam creators. And 2, 609 (87.4%) of them are overlapped with the scam token
creators labeled in the previous step. We further find the tokens created by these scam addresses
and expand 24 new scam tokens through this method. Similarly, we have manually verified these
24 tokens and find no false positives.

In total, based on the labelled scam token seeds, we further expand 2, 448 (= 2, 424+ 24) scam tokens.
These tokens, along with the labelled tokens in Section 4.3, will be used to train a machine learning
10The Contract Deployer can be used by different users to create contracts with similar functionality or structure, thus
these addresses should be excluded when expansion
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classifier for identifying more scam tokens. Note that, we will further use reliable heuristics to verify
the scam tokens flagged by the machine learning classifier, and the expansion method will be further
adopted to new confirmed scam tokens to enlarge our dataset (see Section 4.5).

4.5 Machine learning based detection and verification
The aforementioned two phases can only flag the most obvious scam tokens. However, there
are many other scam tokens that impersonate token sales for popular DeFi projects (e.g., Teller
Finance) and famous brand names (e.g., Facebook). It is non-trivial for us to get a list of targeted
tokens/DeFi/brands for comparison. Thus, in the following, we seek to identify scam tokens based
on their transaction behaviors on Uniswap. We first train a machine learning classifier, and apply it
to all the unlabelled tokens (see Section 4.5.1). For the flagged suspicious tokens, we examine them
and summarize several highly reliable heuristics for verification (see Section 4.5.2). Finally, for the
newly verified scam tokens, we further adopt the expansion technique (see Section 4.5.3).

4.5.1 Machine learning classifier. Based on our preliminary observations, we use a comprehensive
set of features to train a scam token classifier (see Table 4 in Appendix).

1) Time-series features. Scam tokens and pools are usually short-lived. Once the scam has attracted
some victims, scammers tend to remove all liquidity of the pool to get all the reserved tokens in the
pool and gain a profit. The scam token and the corresponding liquidity pools would be discarded
quickly when attackers succeed in scamming money, as it is easy for the scammer to launch a new
scam token. Thus, for each token, we analyze its active period (i.e., from its first transaction to the
latest one) and use it as one feature. Note that, to eliminate the potential bias introduced by our
dataset collection process (e.g., a new normal token listed on Uniswap would lead to a short active
period in our dataset), we further consider the active interval between the last transaction of the
token and the time of our dataset collection, as a feature.
Further, we observe that the distribution of transaction events (i.e., mint, swap, burn) in scam

tokens is quite different from the normal ones. For example, for a scam token, the mint events are
more concentrated at the beginning of its life-cycle (i.e., scammers provide the liquidity to attract
victims), while the burn events are more concentrated at the end of its life-cycle (i.e., scammers
remove the liquidity to gain a profit). As a contrast, for official tokens, mint and burn events are
distributed across the life-cycle. Thus, for a given token, we propose to analyze the relative position
of different types of events (i.e., mint, swap, burn) in terms of occurrence time, which can reflect
the activity of a token to some extent, and define the relative time position of each type of event as:

𝑃𝑒𝑣𝑒𝑛𝑡 =

1
𝑛

∑𝑛
𝑖=1 (𝑇𝑖 −𝑇𝑠𝑡𝑎𝑟𝑡 )
𝑇𝑒𝑛𝑑 −𝑇𝑠𝑡𝑎𝑟𝑡

, (2)

where 𝑛 is the number of events of the specific type (i.e., mint, swap or burn), 𝑇𝑖 denotes the
timestamp of the 𝑖-th event, 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 represent the timestamps of this token’s first and last
transactions, respectively. If a token’s mint events are concentrated at the initial stage, then 𝑃𝑚𝑖𝑛𝑡

will be close to 0. For a scam token, the𝑇𝑒𝑛𝑑 is highly likely to be the time when its only burn event
initiated by the attacker, thus the 𝑃𝑏𝑢𝑟𝑛 of this token will approach 1. Thus, we further extract five
features related to the time position of each type of event, including mint events, swap events,
swap-from events (i.e., swap target token for the other token), swap-to events (i.e., swap other
token for target token) and burn events. In total, we extract seven time-series features, which are
shown in Table 4 of the Appendix.
2) Transaction features. The number of transactions can reflect the popularity and the volume

of a token. Here, for a given token, we consider its transactions on both Uniswap and the overall
Ethereum network. A trustworthy official token will have transactions beyond Uniswap. The
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extracted transaction features include the total number of transactions on Uniswap and Ethereum
respectively, the number and the proportion of the transaction events (i.e., mint, burn and swap)
and the number of involved addresses, with 24 kinds of features in total.

3) Investor features. We observe that a large portion of the investors of scam tokens are inexperi-
enced, i.e., associated with few transactions. Thus, we speculate that the greedy newcomers are
the major targets of the scammers. Thus we extract 4 kinds of investor features for each token,
including the average number of trading pools they interacted with (mint/burn or swap), and the
average number of (mint/burn or swap) transactions.

4) Uniswap specific features. For each token, we further extract features from its state on Uniswap,
including the number of liquidity pools it involved, its trade volume, the total liquidity of the token,
etc. The details of these features are shown in Table 4 of the Appendix.
Based on the extracted features, we next train a machine learning classifier. We have tried

different kinds of models to train the classifier, including Logistic Regression [48], SVM [42],
Random Forest [39], and XGBoost [43]. We use the 10-fold cross validation to evaluate these models.
We shuffle our dataset randomly and split the dataset into 10 groups. For each group, we take this
group as a training set and take the remaining groups as the test set to evaluate the model. Our
experiment results suggest that the random forest model achieves the best result. Using the random
forest model, the Precision, Recall, and F1 score of our classifier are 96.45%, 96.79% ,and 96.62%,
respectively. It suggests the high accuracy of our approach. Thus, we further apply the trained
classifier to the unlabelled tokens on Uniswap. Our classifier flags 11, 182 tokens as potential scam
tokens based on their transaction behaviors.

4.5.2 Verification. Our machine learning classifier flags the suspicious tokens with potential scam
behaviors. Although our classifier can achieve excellent results, it cannot achieve 100% accuracy.
As our goal is to characterize and measure the landscape of scam tokens on Uniswap, a dataset
with high accuracy is a must. Thus, we next use a strict verification strategy to label the most
reliable scam tokens, and perform the characterization study based on them. We randomly select
200 flagged suspicious tokens, seeking to find the clues that can be used to confirm they are scams.
By analyzing their token names/symbols, we devise two highly reliable rules.
First, we find that many of the flagged tokens share the identical token names with each other.

Although they did not counterfeit the popular official tokens we labelled in Section 4.3, we observe
that they seek to promote the scams by exploiting the eye-catching DeFi projects and related hot
topics. For example, we find that there are 429 scam tokens that share the identical name and they
pretend to be the famous DeFi project yearn.finance [21] (YFI). As another example, there are
12 tokens named bore.finance and none of them are the official tokens since the real one [24]
is a BSC (Binance Smart Chain) [23] token, rather than an ERC-20 token on Ethereum. Thus, we
group the suspicious tokens based on their token names and symbols. For the suspicious tokens
with identical names, we further search these names to verify whether they are counterfeit ones. In
this way, 3, 434 of the suspicious tokens are flagged as scam tokens by us with high confidence.
Second, we observe that many scam tokens impersonate to be the tokens released by some

popular companies, authorities, organizations or celebrities by using similar names of them, while
actually there are no official tokens released by these entities. For example, we find a number
of scam tokens with names related to Google, Amazon, TikTok, Trump, Elon Musk, etc. Thus,
following the general way of manual labelling, two authors go over the token names and cross
checked the results to eliminate the bias. We consider a token to be a scam token if both of the two
authors label it as a scam. In this way, we identify 316 such cases.
In total, by applying the heuristics to the suspicious tokens flagged by the machine learning

classifier, we identify 3, 750 (= 3, 434 + 316) scam tokens. For the remaining 7, 432 (=11, 182 − 3, 750)
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suspicious tokens flagged by our classifier, we sample some tokens to manually inspect them and
find that they are likely to be scams too, although we lack strong evidence. Some of these tokens
have the name patterns of DeFi projects (e.g., “finance” or “network” keyword in their names)
while we cannot find any official sites of them but some scam accusations in search engines or
forums. Furthermore, some of these tokens share a similar trading behavior with the scam tokens
we verified. For example, the Phoenix.Finance (PF) token11 is suspicious since it only has 12 token
transfer transactions and the creator of the token adds and removes liquidity within one day. The
Axonic Network (AXO) token12 and Shrink Finance (SRK)13 also have the similar behavior and
their corresponding addresses (i.e., token address, creator address, etc.) are accused of scam by
users. However, they did not fall into the aforementioned two strict heuristics we proposed, and
we did not incorporate them into our scam dataset, due to the conservative consideration.

4.5.3 Expansion. Following the “guilt-by-association” expansion, we expand our scam token list
by analyzing the creators of newly identified 3, 750 scam tokens and liquidity pools, and obtain 674
more scam tokens. Thus, in the machine learning phase, we identify 4, 424 scam tokens in total.

4.6 Summary
Based on the extensive analysis, we flag 10, 920 scam tokens with very high confidence, i.e., 4,048
scams flagged in the ground truth labelling phase, 3,122 (= 2, 448+ 674) ones are expanded based on
guilt-by-association, and 3,750 tokens are expanded by using our machine-learning based detection
and verification technique. These scam tokens are associated with 11, 215 liquidity pools. We want
to reemphasize that, the number of identified scam tokens is indeed a lower-bound, as we enforce a
strict verification method to get the most reliable results.

5 CHARACTERIZING THE SCAMS
We next characterize the flagged scam tokens and liquidity pools by investigating their scam
behaviors, the scammers, and the financial impact.

5.1 General Overview of Scam Tokens and Scam Liquidity Pools
5.1.1 Scale. Wehave identified a total of 10, 920 scam tokenswith 11, 215 liquidity pools, accounting
for 50.14% of all the tokens (44.63% of all pools) on Uniswap. Their total trade volume reaches over
$365 million. 88, 567 Ethereum addresses have interacted with these scam tokens with 659, 087
transaction events in total. It suggests that Uniswap is flooded with scam tokens.

5.1.2 The trend of scam tokens. As shown in Figure 8 (a), the creation of scam tokens and scam
liquidity pools roughly follow the overall trend of Uniswap (see Section 3.2) and the peak appeared
in October 2020, where over 3.8K scam liquidity pools were created on Uniswap. In our dataset,
the first scam token Bizcoin (BIZ) (which is flagged by heuristics in Section 4.5.2 and there are 2
tokens with name “Bizcoin” and 3 tokens with the symbol “BIZ”)14 appeared on May 19th 2020 and
there were four other scam tokens listed on Uniswap this day. According to the post on 4chan [3],
it was promoted as a community token and appeared to be profitable. The token received over
1K transactions and earned the creator about $2200. Figure 8 (b) shows the trend of scam tokens’
transaction events on Uniswap. On average, there are over 3, 200 transaction events related to scam
tokens daily, and the peak reaches almost 20K transaction events. The volume and the liquidity of

11Token address:0x03c2f1b1ba5c5a6cf6d0af816a721a5827171704
12Token address:0x0e123e061cf206dd2bb2c6e040e5932a7a6111e9
13Token address:0x099c4772ac7c866c48b5d870f2c702193cd3f27d
14LP token address:0xde65eed30da8107ce49e8f1952391e16756c2998
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Fig. 8. The trend of scam tokens and liquidity pools on Uniswap.

scam tokens are shown in Figure 8 (c)15. On average, scam tokens have a daily trade volume of
$1.8 million. Different from the general trend, the trade volume of scam tokens often exceeds their
liquidity, indicating the skyrocketing in price within a short time. The scammers often use this trick
to attract more people to invest in the scam tokens (see Section 5.2).

Besides, we also compare the creation times of scam tokens on Ethereum and their corresponding
pools on Uniswap, to investigate if these tokens are organized in scam campaigns. In our dataset,
10, 770 (98.6%) tokens were created after the Uniswap V2 launch and 5, 835 (53%) scam tokens were
created in September and October, which was the most active period of Uniswap. Besides, for
over 92% of the scam tokens, their creation on Uniswap and their related liquidity pool’s creation
on Uniswap were done within one day. This suggests that most of the scam tokens were created
specialized for carrying out scam campaigns on Uniswap.

5.1.3 The pools of scam tokens. Roughly 98% (10, 686) of the scam tokens have only 1 scam liquidity
pool. Nevertheless, some attackers try to create a number of pools to reach as many victims as
possible. For example, the token LEV16 has been paired with 11 kinds of tokens, among which 10
tokens are the leading official tokens and the other 1 scam token was minted by the same liquidity
provider of LEV. Besides WETH, other official tokens like USDT, USDC and DAI are also favoured
by attackers. We further investigate how long it takes for the scammers to remove the liquidity they
inserted (i.e., usually after victims rushed to the scam pools) by calculating the interval between
the scammers’ first mint and burn events. Surprisingly, over 86% of the scam liquidity pools have
an interval within 1 day, and 37% of the pools’ liquidity were removed within 1 hour. This suggests
that attackers prefer to act quickly to secure their scammed money before the victims took actions.

5.2 Understanding the Scam Behaviors
We next investigate the behaviors of these scam tokens and liquidity pools, i.e., how they cheat
unsuspecting users and get a profit. We first randomly select 100 scam liquidity pools, and manually
examine their transactions on Uniswap and their corresponding token smart contracts to investigate
their scam behaviors. Then we design methods to check all the liquidity pools and scam tokens in
our dataset. In general, all the scam liquidity pools are created for the “rug pull” scams, while some
of the scam tokens use many tricks to secure or enlarge the scam tokens’ profits.

5.2.1 The “Rug Pull” Scams. A rug pull is a common kind of scam where developers abandon a
project and take their investors’ money [18]. From the liquidity pools’ perspective on Uniswap, the
ultimate purpose for performing rug pull scams is to fool the victims to invest in the scam tokens
they created and then drain the money of the pools. The motivating example in Figure 6 shows a

15The daily volume and liquidity data of scam tokens come from Uniswap API
16Address:0x3868bd6e8b392eb8dbc8cdcd0c538dc66529adbe
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case of the rug pull scam. The scammer usually creates a scam token and then provides liquidity of
the token by pairing it with a leading cryptocurrency on Uniswap. They will promote the scam
token through social networks with attractive advertisements, usually through Telegram. When
enough victims rush into the liquidity pool and exchange for the worthless tokens with valuable
WETHs or other stable coins, the scammer will withdraw everything from the liquidity pool, and
the victims will get nothing but the worthless scam tokens instead. It can explain why many liquidity
pools on Uniswap have low levels of liquidity, as we observed in Section 3.3. By analyzing the mint
and the burn transaction events, all the scam liquidity pools are carrying out the “Rug Pull” scams.
Further, the “Rug Pull” scams are often combined with other tricks. Most of the attackers

were found to swap scam tokens using tricks like pump-and-dump scams [17], making a scam
coin skyrocketing in price within hours. Due to the mechanism of Uniswap, purchasing tokens
will raise the price and the volume of these tokens. This trick will create the illusion that the
scam token is popular and profitable, which can attract inexperienced investors. Since attackers can
sell the scam tokens they have or remove the liquidity of the scam token pools after the rise
of token prices, most of the money they invested in the scam pool will eventually go back to
the attackers and many attackers are willing to perform this trick. In our dataset, 93% of the
liquidity pools have ever had swap transactions initiated by token/pool creators or their collusion
addresses, and some even swapped for a large amount of money. For example, the token creator
0x2faea647a49a43187ff19cdd5698489ea9a6acb1 swapped 150 WETHs for the token RadixDLT.com
(RADIX)17 , which leads to the increase of the price by about 80%. Besides using the creators’
addresses to add liquidity and swap for tokens, many scam campaigns are using multiple collusion
addresses to add/remove liquidity or swap tokens. These addresses could be operated like normal
investors, which makes them hard to be detected.

Second-round Scams. Besides, 433 scammer addresses are found to perform second-round
scams, i.e., after they make a profit by removing liquidity from scam token pools, scammers
add liquidity again to the same pools and start a new round of scams. For example, the pool
creator 0x1bf3bd8e8afe80d786caa69f98385e0aa7e312ff created liquidity pool for Xfinances
(XFIS) token18 and added liquidity to it on 2020 October 9th. He earned over 72 ETHs (roughly
$43K) through the rug pull scam in about 30 minutes. And only after 4 minutes, he added liquidity
again. He then removed liquidity again after 6 hours, and made another profit of 26 ETHs (roughly
$16K). It suggests that many victims never check the transaction history of the pool before they rush
into it.

5.2.2 Scam Token Smart Contracts with Traps. From the perspective of scam tokens, some of them
have inserted well-designed traps in the code to further cheat the investors. Through exploring
abnormal transactions involving multiple recipients and investigating open-source scam contracts,
we have observed two types of such tricks and designed a method to identify them.

Backdoors in scam token contracts. In general, a scam token campaign would meet two
issues in successfully carrying out the scams. First, some experienced investors may not believe in
the token/pool creators who hold most of the tokens they issued. Second, once victims found they
were cheated after the trading in Uniswap, they usually seek to mitigate a loss, i.e., by swapping back
their valuable tokens as soon as possible before the liquidity has been removed by the scammers.
Thus, we observe that some advanced actions could be performed by scammers to either prevent the
victims from getting back their money or gain the trust of investors.
For the first issue, token creators could design malicious freely mint token contracts to enable

specific scam addresses to add their token balance deliberately while claiming they do not hold many
17Token address:0x4b7266fa8ffda838c64c4b93a7092afe4bd68ed4
18Token address:0xac51e84ccf9ff013f54cc53bbed80250e558d1aa
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From

To

Tx Action

Token
Transferred

(c) A transaction of
advance-fee token PIRATE

(a) A contract code snippet of 
freely mint token LLE

(b) A contract code snippet of
sale-restrict token VIPSwap

Fig. 9. Examples of token contracts with backdoors and advance-fee tokens.

scam tokens to reduce the victims’ suspicions. By doing so, these specific addresses could swap
the tokens in the liquidity pool when the token price is at a high point (i.e., some victims rushed
to the pool). These specific scam addresses could perform this kind of operation stealthily since
this kind of operation may even not emit events for users to track based on the design. Figure 9 (a)
shows an example of this kind of scam token contract, where the Leopard lending ecology (LLE)
token 19 left a back door for the scam address 0x7eed24c6e36ad2c4fef31ec010fc384809050926.
The address can call the “mint” function to add any amount of LLE token for it deliberately. The
function was not implemented to emit an event and thus users and Dapps rely on events to track
the transfers of this token cannot find the mint activity easily. In fact, the address added 1.8 × 1012
tokens to it (which are even more than the token’s total supply) and swapped these 1.8 × 1012
tokens to get roughly 474 Ethers (roughly $28K) from the LLE liquidity pool.
To address the second issue, some token creators come up with a trick to prevent victims from

selling tokens except for token creators themselves by designing sale-restrict token contracts. Figure 9
(b) shows such an example. As written in the contract modifier, the VIPswap (VIP) token 20 allows
all the users to buy VIP tokens while restrict all the users except the contract owner to sell them.
The token creator 0x7af0f3e99a30b682d61c07be19c5874fb80e3832 created 58 such tokens and
these tokens gained a profit of over 77 Ethers (roughly $46K).
To identify the backdoors, we first analyze the token contracts and identify the contracts that

used Solidity modifiers in their key functions (like selling tokens or minting tokens), as the Solidity
modifier is mainly used for automatically checking a condition prior to executing a function. Then,
we manually check the code to see if these modifiers are used to restrict the functions to be executed
only by attackers. By this, we find 297 freely mint token contracts with 131 token creators and 373
sale-restrict token contracts token contracts with 109 token creators.

Advance-fee tokens Besides gaining a profit from “Rug Pulls” scams, some attackers have
designed tokens that will charge a fee when users perform mint, swap, or burn operations. For an
advance-fee token, the fee rules are often written in its codes to transfer part of the tokens to a
19Token address:0x48fa649638318aa0e85dc0fec425c015304d175a, its contract name is called “SoloToken”
20Token address:0x3b0407c648dd2f3eaa23fc69f952d98b2f24257e
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specific address every time when a swap operation happens. This specific address is claimed to be
a bonus or reward pool to reward the users involved in the transactions of this token.
To identify them, we track all the transactions related to scam tokens, and identify abnormal

transactions where scammers received tokens or ETHs even though they are not the direct par-
ticipants of these transactions. We have identified 63 advance-fee tokens. A typical example is
shown in Figure 9 (c)21. The piratetoken.finance (PIRATE) token22 will charge a 5% fee from
investors to the address 0x2118f52b76602fde203f4ad1ea48690223af7568, which is declared by
the scammer as a daily bonus to a random user address. However, the address will never send out
the bonus and this is just an excuse to stimulate token transfers and intend to raise the token’s
price in disguise.

5.3 Understanding the Scammers
As aforementioned, different kinds of scam addresses controlled by the scammer would collude to
carry out a scam. In general, the following five kinds of scam Ethereum addresses are involved: 1)
scam token addresses, the token used to carry out scams; 2) scam liquidity pool addresses, the liquidity
pools consist of pairs of scam tokens and other tokens; 3) the creators of scam tokens, addresses that
create the scam tokens on Ethereum; 4) scam pool creators (first mintors), addresses that create the
scam liquidity pools on Uniswap; and 5) collusion addresses, addresses which cooperate with scam
token/pool creators to carry out scam campaigns. Since scam tokens and scam pools have already
been investigated in previous sections, we will analyze in detail the scam token creator addresses,
scam pool creator addresses and collusion addresses.

5.3.1 The creators of scam tokens. The 10, 920 scam tokens are created by 6, 288 scammers, and 89%
of themwere first minted by their creators. Roughly 76% of the scam token creators only created one
scam token while 1% of the scam creators have created more than 10 scam tokens. The scam creator
that released most number of tokens is 0x3bcfa9357ab84baec04313650d0eebb3fd51070d, with
87 scam tokens in total, including several counterfeit tokens like Keep3r (KPR)23, YKeep3r.network
(YKP3R)24 ,etc., targeting at Keep3rV1 (KP3R) [15], a famous DeFi project.

5.3.2 The creators of scam liquidity pools. As to the liquidity pools, 11,215 scam pools are created
by 6, 465 creators (first mintor). When considering liquidity providing, pool creators usually initially
provide a substantial amount of liquidity into their pool to cultivate investor confidence, as the liquidity
they provided will eventually go back to them. Over 60% of the pool creators have ever provided
liquidity with valuable tokens at a cost of more than $10K. The most lavish pool creator has provided
liquidity with 1, 600 ETH (roughly $962K) in the Cybercore.Finance (CYBER)25-WETH pool.

5.3.3 Collusion Scam Addresses. To attract victims and avoid the scams being easily detected,
collusion scam addresses are usually utilized to collaborate with the scam token/pool creators to
carry out scams. Some collusion addresses are participated in providing and removing liquidity of
the scam pools while the other collusion addresses are used to swap tokens (e.g., like the pump and
dump aforementioned). The collusion addresses could swap valuable tokens for scam tokens to
raise the price of scam tokens, or in contrast, they could swap scam tokens for valuable tokens
back to drain the pool and make a profit. In the case of Super Core Reserve Token (SCRT)26, the

21Transaction Hash:0xb63891bebda1d330e06603d680accfb1c5ace82c1e473e5cfa620b511d544ae9
22Token address:0x94152edd72eab86c016c3c5fb40376a88f10de5b
23Token Address:0x66f04254ca406cedf222687afe873a35da573f2c
24Token Address:0x7a1c0213c9e05ed1b20d691ceda7387a62725143
25Token address:0x5f21f580261a773aab2bff6cbc9814f6e7a67d78
26Token address:0x002ef27dee7a7d74ba59671385c51aa3d561d228
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1) Add liquidity to the scam pool 2) Remove liquidity from the scam pool

3) Swap valuable coins for scam tokens 4) Swap scam tokens for valuable coins

Valuable Token

Scam Token

Known Scam Address

Collusion Address

Liquidity Pool

Fig. 10. Four kinds of collusion addresses categorized based on their Uniswap transaction behaviors. The
arrow denotes the transfer of tokens and the time order of transaction events is from left to right.

token creator and pool creator 0xc7f82560c727c2045e7c19f8bc29c5cb8d258f7c first transferred
750 SCRT to its collusion address 0x39e407b5cf03311251c79c60dbc72b842007ba12. Then this
collusion address waited for the price rise, sold out the tokens it had and transferred the ETHs it
got to the creator. The behaviors of collusion addresses may look similar to victims on Uniswap and it
is hard to distinguish them based solely on Uniswap events, while we should not regard the collusion
addresses as victims. Thus, we further design a method to accurately detect collusion addresses.
Detecting collusion addresses. One major characteristic of the collusion addresses is that

they should have strong connections with other scam addresses operated by the same scammer. They
first need to operate on the same scam Uniswap pool with other scam addresses. Besides, there
should be money flows between the collusion addresses and other known scam addresses, as the
collusion addresses may either receive money from scammers to interact with the pools (i.e., add
liquidity or swap scam tokens) or transferring money they earned (by removing liquidity or sell
scam tokens) to the scammers for aggregation. Thus, to effectively differentiate collusion addresses
and victims, we have categorized the collusion addresses into the following four categories based on
their transaction behaviors (i.e, mint, burn, and swap) on Uniswap and summarized their features,
which is shown in Figure 10.

1) Add liquidity to the scam pool. For the addresses that inserted liquidity to the scam pool, if
they have ever received Ether or stable coins (i.e., according to the corresponding token pairs
of the pool) from the known scam addresses of the pool (e.g., scam token/pool creators) before
their adding liquidity transactions, we will flag them as collusion addresses.

2) Remove liquidity from the scam pool. For the addresses that removed liquidity from the scam
pool, if they have transferred the Ether or stable tokens to known scam addresses of the pool
after their removing liquidity transactions, we will flag them as collusion addresses.

3) Swap valuable coins for the scam tokens. For the addresses that swapped Ether or stable coins
for scam tokens (in order to raise the token price and attract victims), if they have ever
received Ether or stable coins from known scam addresses of the pool before their swapping
transactions, we will flag them as collusion addresses.

4) Swap scam tokens for valuable coins. For the address swapped scam tokens for Ether or stable
coins to gain a profit, if they have transferred the valuable tokens to known scam addresses
of the pool after their swapping transactions, we will flag them as collusion addresses.

We believe these heuristics are comprehensive (i.e., covering most of the possible behaviors of
collusion addresses on Uniswap) and reliable (i.e., by no means a victim would behave like this).
Thus, from the known scam addresses (i.e., scam token/pool creators) of a given scam pool, we
iteratively discover the collusion addresses. At last, we get 41, 118 collusion addresses connected
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with 3, 377 scam token/pool creators. Among them, 39, 758 addresses had been used in swap
operations, while 6, 299 addresses had been involved in liquidity related operations.

5.3.4 Summary. Overall, 70, 331 scam addresses related to the scams are identified, including
10, 920 scam tokens, 11, 215 scam pools, 6, 288 scam token creators, 6, 465 scam pool creators, and
41, 118 collusion addresses. Note that, one address can serve more than one roles across different
scam liquidity pools.

Table 2. The top-10 profitable scam tokens and liquidity pools.

Pool Address Token0 Token1 Profit
($)

# of
Victims

0xfc2903fa0ee403b0e49cc7fb0919f04c4a49ee28 certik.foundation (CTK) Wrapped Ether (WETH) 1,502,118 365

0x0383eeb899e7fc0f4f696ebfcb5672ad7e0d271c woo.network (WOO) Wrapped Ether (WETH) 1,188,742 321

0xaa2e4317b13e3b4edfd45642516b31e211c3e71f medicalveda.com (MVEDA) Wrapped Ether (WETH) 871,450 142

0xa356939e22878af64560ba7e4253650f8cd9915d flamingo.finance (FLM) Wrapped Ether (WETH) 843,912 153

0xb7864c708ad58af75c756c26b1ba155bfa0e2307 yfi.group (YFIG) Wrapped Ether (WETH) 706,504 1,692

0xf2486c8f03afb444783427d620bf75510766e88d akash.network (AKT) Wrapped Ether (WETH) 628,409 119

0x57a5dd974adac8738d6796502c899d13e8903141 Alpha Finance Lab (ALPHA) Wrapped Ether (WETH) 597,094 155

0x9e3fcc46ef41eb5c20f404c4c35848deb34044fc Deriswap (DWAP) Wrapped Ether (WETH) 498,349 124

0xaacd36c877408824ee59540b0c093804d7e9a7d9 Meridian Network (MRDN) Wrapped Ether (WETH) 489,992 923

0x700fa01ac5b01d6d92384062906f463292e682c9 Injective Protocol (INJ) Wrapped Ether (WETH) 477,553 135

5.4 Measuring the Financial Impact
We next perform an impact analysis on these scams based on all the transactions related to Uniswap
we collect in Section 3.1.1. In each transaction, all the balance change related to participants on
Uniswap are calculated and tracked. In total, these scam tokens profit over $16 million, including
over 28K ETHs and other leading official tokens, from 39, 762 potential victim addresses (i.e., all
the scam liquidity pool investors excluding the scam addresses). On average, each scam liquidity
pool has gained a profit of $1, 477. Table 2 shows the top 10 most profitable pools. The most
profitable scam liquidity pool, reserving certik.foundation (CTK) - Wrapped Ether (WETH)
pair, made a profit of over $1.5 million. It impersonated to be the official token of Certik [25], a
blockchain security company whose official token contract was built on BSC chain, and fooled 365
potential victims. Since most of the scam tokens only have one liquidity pool (see Section 5.1.3),
the overall impact of scam tokens is similar to the liquidity pools, and the top-10 profitable tokens
are also shown in Table 2. It is notable that all these 10 tokens are imitations of existing blockchain
projects. Six of the top-10 scam tokens are camouflaging official ERC-20 tokens, while some scam
campaigns also created counterfeit cryptocurrency targeting official tokens that were released on
other blockchain platforms, such as flamingo.finance (FLM) on NEO blockchain.

6 DISCUSSION
6.1 Generality of Scam Tokens
Although Uniswap V2 we study in this paper is one of the most representative DEXs based on its
popularity, there are many other DEXs that operate well due to their unique features. Many DEXs,
like Sushiswap, Bancor, etc., adopt the same/similar trading mechanism with Uniswap, i.e., the
Automated Market Makers (AMMs). Thus, in practice, an attacker could easily create pools of scam
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tokens on multiple different DEXs to reach to as many unsuspecting investors as possible to gain
more profit.

Table 3. The scam tokens of our dataset found in other DEXs.

DEX # of Scam Tokens # of Total Tokens Launch Time

Uniswap V3 5 3,183 May-2021
Uniswap V1 29 3,086 Nov-2018
Sushiswap 24 1,633 Sep-2020
Balancer 20 1,243 Feb-2020
Bancor 0 313 Jan-2017

We provide an explorative study to show the generality of the issue and the prevalence of scam
tokens on other DEXs. We choose the other two versions of Uniswap and three popular DEXs (i.e.,
Sushiswap, Balancer, Bancor). We take advantage of the query APIs provided by these DEXs to
investigate whether the scam tokens we identified have penetrated into DEXs beyond Uniswap V2.
Table 3 shows the overall result. As expected, the scam tokens have slipped into other DEXs, i.e.,
all the five DEXs we explored have found scam tokens, although there are not many tokens listed
on them. For example, the fake Radar (RADR) token27 was firstly listed on Uniswap V2 on 2020
July 4th. Within the same day, the attacker profited from the pool by Rug Pull and then the token
was listed on Balancer the next day. Due to dataset limitation, we did not cover the detailed results
of other DEXs in this paper. Nevertheless, the detection methods proposed in this paper could be
applied to these DEXs directly.

6.2 Implication
Our observations suggest the urgency to identify and avoid the scam tokens on DEXs.

6.2.1 The system designers/operators. The root cause of this kind of scam is that DEXs do not
maintain any rules for token listing, and Ethereum does not regulate the naming schemes of scam
tokens. Thus, there is a strong need to design policies to regulate the token releasing on Ethereum
and the liquidity pool listing on DEXs. However, this may contradict the goal of DEX, a fully
decentralized marketplace. We believe a token reputation system is needed to decrease the impact
of scam tokens. Techniques like the ones proposed in this paper could be used to flag suspicious
tokens and further help develop methods to detect token contracts with backdoors. Instead of simply
blocking the transactions on suspicious tokens, these detection results can be further embedded in
the DEX front-end to warn users when they try to engage with the high-risk tokens.

6.2.2 Investors. Further, awareness should also be raised among investors. Rather than searching
for tokens or pairs on Uniswap (as the scam token names are confusingly similar to the official
ones), the investors should rely on trusted sources like CoinMarketCap or the official sites of DeFi
projects to make sure they are trading with the official tokens. Also, before diving into the liquidity
pool, investors should carefully check the transaction history of the pool, and pay special attention
to the coin skyrocketing in price within a short time. Besides, as we find backdoors in some scam
tokens’ contracts, investors with experience in reading contracts could also look out for traps
written in their contract codes.

27Token address:0x2933d48ab6833cfb56de5252277339f941f47cdb
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6.2.3 DeFi Project Team. At last, for the operation team of a DeFi project, they should be aware of
the scam token abuse (which would hurt their reputation), and regularly post public announcements
to remind their investors.

6.3 Limitation
Our study carries certain limitations.

First, our scam token detection framework relies on some heuristics and manual efforts for verification.
While these heuristics proved effective, we acknowledge that they are too strict that the compiled
scam token list may be incomplete. Indeed, our machine learning classifier flags much more
suspicious tokens, while to the best of our knowledge, it is non-trivial to verify them and we could
identify no better alternatives. Therefore, the characterization study in this paper provides the
lower-bound results of the scam tokens on Uniswap. Nevertheless, we have curated by far the
largest scam token dataset which will be shared with the research community.

Second, our machine learning based detection relies on the transaction history of scam token, which
may limit the usage scenario of our approach. However, we argue that our approach can flag the
scam tokens with partial or only a few transactions. For example, we have identified and verified
over 1,800 scam tokens with less than 10 transactions using the machine learning based approach. It
suggests that our machine learning based approach can act as a whistle blower that identifies scam
tokens at their early stage (before they create a huge impact). Further, for the identified scam tokens,
the guilt-by-association based expansion method could help us identify more scam tokens created
by the same campaigns, even the newly emerging ones with no transactions. Thus, the machine
learning based approach and the manual summarized heuristics can be used in the real-world usage
scenario to identify scams at their early stage and eliminate the impact they caused.
Third, although we have tried our best to understand the workflow of these scams and reveal the

scam campaigns behind them, there might be more complex operation networks of the scams we did
not touch (e.g., we did not track how they launder the scammed money). Thus, it is quite possible
that there are many scam addresses we did not observe.

7 RELATEDWORK
7.1 Research on Cryptocurrency Exchanges
Some researchers are focused on the security issues of centralized cryptocurrency exchanges [47,
49, 53, 55, 58, 59]. For example, Kim et al. [55] analyzed vulnerabilities of cryptocurrency exchanges
and individual user wallets and Ji et al. [53] demystified the fake deposit vulnerability related to
exchanges and tokens. Others are take efforts to evaluate or improve the effectiveness and reliability
of decentralized cryptocurrency exchanges [32, 36, 41, 57, 70]. Lo et al. [57] verify the effectiveness
of decentralized exchanges and Annessi et al. [32] are exploring ways to improve security for DEX
users through multiparty computation.

7.2 DeFi Security
The security of DeFi is also a hot research topic. There are many researchers studying on the
price manipulation of DeFi [38, 62, 64, 65, 69, 73]. For example, Boonpeam et al. [38] investigate
arbitrage strategies and factors for profit-maximizing on decentralized exchanges, while Wang et
al. [69] focus on cyclic arbitrage on Uniswap and evaluate its impact. Others have studied secure
vulnerabilities and attacks on DeFi and Oracle [40, 51, 52, 60, 68, 71]. For example, Hsu et al. [52]
explored how design weaknesses in DeFi protocols could lead to a DeFi attack and Wang et al. [68]
proposed a real-time attack detection system for DeFi projects on the Ethereum blockchain through
symbolic reasoning on smart contracts and monitoring transactions.
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7.3 Blockchain Scams
Many kinds of blockchain scams have been studied, including the Ponzi Schemes [34, 35, 37, 45, 46,
66, 67], fraudulent Initial Coin Offering (ICO) [56, 75], phishing scams [44, 61, 72], bitcoin generator
scams [33], fake cryptocurrency exchanges [74] and counterfeit tokens [50] , etc. Some of them
also used machine learning methods to detect scams. For example, Badawi et al. [33] utilized search
engines to search for web pages and train a classier to detect Bitcoin generator scams. Wu et al. [72]
proposed a network embedding algorithm to identify phishing addresses. Despite this, as a kind
of emerging scams, scam tokens on DEX have not been systematically studied yet and existing
techniques cannot be applied to identify scam tokens directly.

8 CONCLUSION
This paper presents the first in-depth analysis of scam tokens on Uniswap. We have proposed an
effective and accurate method for detecting scam tokens, and identified over 10K scam tokens and
scam liquidity pools on Uniswap V2. We have systematically analyzed the scam behaviors, their
working mechanism, and the financial impacts. We reveal that scams are prevalent on Uniswap,
and we speculate that similar scams could have been sneaked into other DEXs and Defi projects,
because the inner cause lies in the loose/empty regulation of cryptocurrency on decentralized
platforms. We advocate the cryptocurrency community to maintain a token reputation system
using techniques like the ones proposed in this paper to eliminate the impact of scam tokens.
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Appendix 1 APPENDIX FOR MACHINE-LEARNING BASED DETECTION AND
VERIFICATION IN SECTION 4.5.1

Appendix 1.1 Features used in our machine learning classifier.
Table 4 shows the 40 kinds of features we extract to train a scam token classifier, including 7 kinds
of time-series features, 24 kinds of transaction features, 4 kinds of investor features and 5 kinds of
Uniswap specific features.

Table 4. The features used in our scam token classifier.

Feature Description

Time-series

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 The time interval from the first transaction to the last transaction on Uniswap
𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 The time interval between the last transaction and the study time on Uniswap
𝑃𝑚𝑖𝑛𝑡 The time point of mint events in the whole token lifecycle on Uniswap
𝑃𝑠𝑤𝑎𝑝 The time point of swap events in the whole token lifecycle on Uniswap

𝑃𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚 The time point of swap-from events (swap from tartget token for other token) in the whole token lifecycle on Uniswap
𝑃𝑠𝑤𝑎𝑝𝑡𝑜 The time point of swap-to events (swap from other token for target token) in the whole token lifecycle on Uniswap
𝑃𝑏𝑢𝑟𝑛 The time point of burn events in the whole token lifecycle on Uniswap

Transaction

𝑁𝑇𝑥𝑈 Total transaction numbers on Uniswap
𝑁𝑇𝑥𝐸 Total transaction numbers on Ethereum
𝑁𝑚𝑖𝑛𝑡 Total mint event numbers on Uniswap
𝑁𝑠𝑤𝑎𝑝 Total swap event numbers on Uniswap
𝑁𝑠𝑤𝑎𝑝𝑡𝑜 Total swap-to event numbers on Uniswap

𝑁𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚 Total swap-from event numbers on Uniswap
𝑅𝐸𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚_𝑠𝑤𝑎𝑝𝑡𝑜 𝑁𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚/𝑁𝑠𝑤𝑎𝑝𝑡𝑜 , set to -1 if the 𝑁𝑠𝑤𝑎𝑝𝑡𝑜 is 0

𝑁𝑏𝑢𝑟𝑛 Total burn event numbers on Uniswap
𝐴𝑚𝑖𝑛𝑡 Total number of addresses that have participated in mint events on Uniswap
𝐴𝑠𝑤𝑎𝑝 Total number of addresses that have participated in swap events on Uniswap
𝐴𝑠𝑤𝑎𝑝𝑡𝑜 Total number of addresses that have participated in swap-to events on Uniswap

𝐴𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚 Total number of addresses that have participated in swap-from events on Uniswap
𝐴𝑏𝑢𝑟𝑛 Total number of addresses that have participated in burn events on Uniswap
𝐴𝑎𝑙𝑙 Total number of addresses that have participated in events on Uniswap

𝑅𝐸𝑚𝑖𝑛𝑡_𝑎𝑙𝑙 𝑁𝑚𝑖𝑛𝑡/𝑁𝑇𝑥𝑈

𝑅𝐸𝑠𝑤𝑎𝑝_𝑎𝑙𝑙 𝑁𝑠𝑤𝑎𝑝/𝑁𝑇𝑥𝑈

𝑅𝐸𝑠𝑤𝑎𝑝𝑡𝑜_𝑎𝑙𝑙 𝑁𝑠𝑤𝑎𝑝𝑡𝑜/𝑁𝑇𝑥𝑈

𝑅𝐸𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚_𝑎𝑙𝑙 𝑁𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚/𝑁𝑇𝑥𝑈

𝑅𝐸𝑏𝑢𝑟𝑛_𝑎𝑙𝑙 𝑁𝑏𝑢𝑟𝑛/𝑁𝑇𝑥𝑈

𝑅𝐴𝑚𝑖𝑛𝑡_𝑎𝑙𝑙 𝐴𝑚𝑖𝑛𝑡/𝐴𝑎𝑙𝑙

𝑅𝐴𝑠𝑤𝑎𝑝_𝑎𝑙𝑙 𝐴𝑠𝑤𝑎𝑝/𝐴𝑎𝑙𝑙

𝑅𝐴𝑠𝑤𝑎𝑝𝑡𝑜_𝑎𝑙𝑙 𝐴𝑠𝑤𝑎𝑝𝑡𝑜/𝐴𝑎𝑙𝑙

𝑅𝐴𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚_𝑎𝑙𝑙 𝐴𝑠𝑤𝑎𝑝𝑓 𝑟𝑜𝑚/𝐴𝑎𝑙𝑙

𝑅𝐴𝑏𝑢𝑟𝑛_𝑎𝑙𝑙 𝐴𝑏𝑢𝑟𝑛/𝐴𝑎𝑙𝑙

Investor

𝐿𝑚𝑖𝑛𝑡/𝑏𝑢𝑟𝑛 The average liquidity pools the participants that have minted or burnt on Uniswap
𝐿𝑠𝑤𝑎𝑝 The average liquidity pools the participants that have swapped on Uniswap

𝐶𝑚𝑖𝑛𝑔/𝑏𝑢𝑟𝑛 The average mint or burn event counts of participants on Uniswap
𝐶𝑠𝑤𝑎𝑝 The average swap event counts of participants on Uniswap

Uniswap Specific

𝑁𝑝𝑜𝑜𝑙 The number of liquidity pools
𝑉𝑡𝑜𝑘𝑒𝑛 Amount of tokens traded all time across pairs
𝑉𝑡𝑟𝑎𝑐𝑘𝑒𝑑 Amount of tokens in USD traded all time across pairs (only for tokens with a certain level of liquidity)
𝑉𝑢𝑛𝑡𝑟𝑎𝑐𝑘𝑒𝑑 Amount of tokens in USD traded all time across pairs (all tokens)
𝑁𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 Total amount of token provided as liquidity across all pairs
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