
WEMINT: Tainting Sensitive Data Leaks in
WeChat Mini-Programs

Shi Meng1,2, Liu Wang*2, Shenao Wang1, Kailong Wang�1, Xusheng Xiao3, Guangdong Bai4, Haoyu Wang�1

1† Huazhong University of Science and Technology, China 2 Beijing University of Posts and Telecommunications, China
3 Arizona State University, United States of America 4 The University of Queensland, Australia

Abstract—Mini-programs (MiniApps), lightweight versions of
full-featured mobile apps that run inside a host app such as
WeChat, have become increasingly popular due to their simplified
and convenient user experiences. However, MiniApps raise new
security and privacy concerns as they can access partially or all
of host apps’ system resources, including sensitive personal data.
While taint detection has been proven effective in addressing this
kind of concerns, existing taint detection techniques for mobile
apps cannot be directly applied to MiniApps. The main reason is
that the key logics of MiniApps are usually written in JavaScript,
and its intrinsic characteristics (function-level scope, dynamic
types, synchronous programming, and code obfuscation) prevent
existing taint detection techniques from precisely propagating the
taints. To address this problem, we propose a novel taint detection
technique, WEMINT, that detects sensitive information leaks in
MiniApps. Specifically, WEMINT facilitates taint propagation via
building a context-based model based on the operational prin-
ciple of MiniApps and JavaScript, and addresses asynchronous
function calls by modeling their callbacks explicitly in taint rules.
In addition, due to the adoption of Abstract Syntax Trees (ASTs)
for code representation during taint detection, WEMINT exhibits
better robustness against the commonly-applied code obfuscation.
Our experimental results show that WEMINT can effectively
detect sensitive information leaks in WeChat MiniApps, as well
as trace the path of sensitive data flows. By applying WEMINT to
over 20K suspicious MiniApps, we found that over 7.5K (36.5%)
of them have sensitive data leaks, and WEMINT outperforms
the state-of-the-art DoubleX based techniques in detecting these
leaks.

Index Terms—WeChat Mini-programs, Taint detection, Secu-
rity, Privacy

I. INTRODUCTION

Mini programs (or MiniApps), known as the lightweight

version of the full-featured mobile applications running inside

a host application (or SuperApp), have gained significant pop-

ularity in recent years by providing a seamless but simplified

user experience (i.e., simplified navigation and limited but

relevant features) [1]. For example, the users can accomplish

a rich set of activities in an integrated manner, such as online

shopping [2], watching and sharing social media contents [3],

playing video games [4] or even seeing a doctor [5], inside

the SuperApp without the nuisance for downloading multiple

*Liu Wang is the co-first author.
�Haoyu Wang (haoyuwang@hust.edu.cn) and Kailong Wang

(wangkl@hust.edu.cn) are the corresponding authors.
†The full name of the affiliation is Hubei Key Laboratory of Distributed

System Security, Hubei Engineering Research Center on Big Data Security,
School of Cyber Science and Engineering, Huazhong University of Science
and Technology.

applications. These MiniApps thus gradually form unique

ecosystems centering the SuperApps. Among them, WeChat

has emerged as the most influential and dynamic, hosting over

7 million MiniApps that serve over 450 million DAUs (daily

active users) [6].

The tremendous amount of data available from the WeChat

ecosystem as well as the enormous size of active users have

nurtured the thriving community of MiniApps1 that is built

upon. Accompanied by the conveniences and versatility boost

for user experiences, the under-researched dynamics between

WeChat and its MiniApps inadvertently open up new surfaces

for ill-purposed parties to exploit potential privacy weaknesses.

One of the primary concerns pertains to the collection and

use of personal data by third-party developers. For instance,

WeChat possesses a number of system-level permissions, and

consequently the MiniApps could access partial or all of these

system resources including personal data, without obtaining

any form of notification or authorization. Another concern

is the lack of transparency with respect to data collection

and usage by third-party developers. The absence of clear

information about how user data is collected and utilized

renders it challenging for users to make informed decisions

regarding their use of MiniApps.

As user private data protection has become increasingly

critical in light of privacy laws such as GDPR [7], CCPA [8],

APPI [9] and PDPA [10], WeChat has been actively incor-

porating guidelines and instructions [11] that impose more

stringent scrutiny on data collection and processing from

MiniApps. However, these are far from sufficient to safeguard

the WeChat ecosystem from careless or even malicious de-

velopers who would accidentally or intentionally leak users’

sensitive data. Although such issues from MiniApps have gar-

nered mounting interest from the relevant research community,

most of the recent works still focus on understanding the appli-

cation ecosystem [4], [12]–[14] and measuring/characterizing

its security/privacy issues [1], [15]–[17]. There still lacks a

generic and systematic approach to track sensitive data flows

and identify potential information leaks within MiniApps. The

intuitive solution would be applying taint detection to this

problem, as frameworks like FlowDroid [18] have been proven

successful and powerful in the literature. Unfortunately, we

have identified several critical obstacles that prevent the direct

1MiniApps hereafter refers to WeChat MiniApps for simplicity, unless
specified otherwise.

1403

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00151

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

15
1

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

application of existing taint detection techniques.

Given that the key logics of the MiniApps are written in

JavaScript, most of those obstacles originate from the intrinsic

characteristics of the language. The biggest obstacle is rooted

in JavaScript’s function-level scope, which specifies that vari-

ables declared inside a function are not visible outside of

that function. This constraint makes it particularly difficult to

propagate the taint, especially in larger code bases. In addition,

the dynamically typed nature of JavaScript further exacerbates

the situation, as the increased difficulty in resolving the types

of variables or expressions hinders the taint propagation. The

second obstacle is due to the asynchronous programming

commonly seen in JavaScript. More specifically, the use of

callbacks, promises, and async/await can make it complicated

to determine the program execution flow. The third obstacle

is related to the prevalent code obfuscation, which could

invalidate techniques requiring clean source code.

Despite the abundance of tools and research for JavaScript

analysis, they unfortunately fall short when directly applied

to MiniApps. As a distinct subset of JavaScript applications,

MiniApps incorporate a broad array of predefined and cus-

tomized objects and APIs from the WeChat platform. These

elements inevitably lead to disruptions in the data and control

flows established by existing JavaScript static analysis tools,

such as DoubleX [19] and TAJS [20], thereby complicating the

analysis process. In particular, these disruptions could block

or significantly reduce the effectiveness of taint propagation.

Our work. To advance the taint detection technique on

MiniApps, we propose WEMINT that can effectively bridge

the aforementioned gaps. WEMINT constructs a context-

based analysis model based on the operational principle

of MiniApps, which can enable effective taint propagation

in different JavaScript function-level scopes (to be detailed

in Section IV-B1). To provide better resolution for asyn-

chronous functions, WEMINT leverages the taint detection

model constructed according to the structural features of

asynchronous APIs and their callback functions (to be detailed

in Section IV-B2). Due to the adoption of Abstract Syntax

Trees (ASTs) for code representation during taint detection,

WEMINT exhibits better robustness against the commonly-

applied code obfuscation, compared to approaches directly

applied to clear-text source code such as those on JavaScript

files. WEMINT starts with a taint detection to enable a

coarse-grained search for potential data leaks. To capture in

detail the suspicious private data leaks reported from the

taint detection, we further develop a complementary data

flow analysis that reports the explicit sensitive information

transition paths from the target source to destination (to be

detailed in Section IV-C).To facilitate the research in this area,

we open source WEMINT at the online repository [21].

Contributions. In summary, this paper makes the following

contributions:

• We propose WEMINT, a novel static taint detection frame-

work designed to detect potential sensitive data leaks in

WeChat MiniApps. WEMINT relies on a context-based

analysis mode to address the challenges of JavaScript’s

Fig. 1. The Runtime Framework of MiniApp

function-level scopes and adopts abstract syntax trees for

code representation, providing systematic taint detection and

sensitive data flow path tracking in MiniApps.

• We conduct experiments to evaluate the effectiveness of

WEMINT. Experimental results show that WEMINT is

capable of tainting sensitive data leaks in MiniApps with

promising accuracy and efficiency. Compared to the state-of-

art, WEMINT exhibits better support for taint propagation

and sensitive path construction in JavaScript.

• We perform a large-scale measurement study by applying

WEMINT to over 20,000 MiniApps, seeking to measure

the sensitive data leaks of MiniApps in the wild. We reveal

the severity of sensitive data leaks in the WeChat MiniApp

ecosystem.

II. BACKGROUND

In this section, we provide an overview of WeChat

MiniApps from both the perspective of code composition and

the runtime framework.

A. WeChat MiniApp Code Composition

A WeChat MiniApp consists of two main parts: a set of

code describing the overall MiniApp, and multiple sets of code

describing each page of the MiniApp. The code describing

the overall MiniApp consists of three files: (i) app.json, the

global configuration file for the MiniApp; (ii) app.js, the file

that registers the MiniApp instance with the App() method;

(iii) app.wxss, the file that defines the global style. The

code describing the MiniApp pages consists of four files: (i)
login.wxml, which defines the page structure [22]; (ii) login.js,

which defines the initial data, lifecycle callback functions and

event handling functions for the page; (iii) login.wxss, which

defines the page style; (iv) login.json, which configures the

window representation of the page.

B. Runtime Framework for WeChat MiniApps

The framework of a WeChat MiniApp can be separated into

two layers, the view layer and the logic layer, as shown in

Figure 1. The view layer is composed of .wxml and .wxss
files, and the logic layer comprises .js files. Multiple pages in

an MiniApp correspond to multiple WebView threads in the

view layer. The logic layer performs logical processing, data

requests, interface calls, and so on through JSCore threads.

The WebView thread and the JsCore thread communicate

1404

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

through the JSBridge of the MiniApp host app (i.e., WeChat).

Whenever the data in the logic layer changes, the setData()
method is used to trigger updates in the view layer. The

view layer generates an interaction event that invokes the

corresponding event handler function in the logic layer, and if

a change is made to the data in the event handler function, it

triggers the update in the view layer again. In addition, some

API calls in the logic layer are also handled through the host

app, such as network requests are forwarded through the host

app, cameras need to be started by the host app, etc.

III. MOTIVATION AND A PILOT STUDY

Due to the architectural design of WeChat MiniApps,

MiniApps usually have frequent data exchange and sharing

with the host apps and the backend server through the pre-

defined interfaces, which opens up new surfaces for sensitive

data leaks. One of the prominent examples is the leak of

App Secret. The App Secret is a unique credential key of

the MiniApp, and also an important parameter to get the

Access Token that is the only backend API interface call

credential for MiniApps. It is crucial for developers to keep

this App Secret confidential, as WeChat officials have warned

that the App Secret leaks can cause serious consequences

such as identity fraud and sensitive data leaks. However, some

developers still write the App Secret in the JavaScript code of

the MiniApp logic layer, and use it as a parameter when calling

the wx.request() to access the sensitive interface provided

by WeChat and obtain some important return values. This

approach is dangerous, as the code packages for MiniApps can

be easily obtained and decompiled. If the App Secret is leaked,

hackers can decompile the code package of the MiniApp and

obtain the Access Token, potentially leading to an attack.

We conducted a pilot study and surprisingly found frequent

App Secret leaks problem, even for those with a large user

base. For instance, we found a WIFI information sharing

MiniApp2 (with 2.78 million users) vulnerable against the

App Secret leaks in October 2022. Figure 2 shows that the

developer defines a button in the view layer and binds the ge-
tUserInfo() callback function to initiate a user login operation.

Within the function, the requestLoginUserIdPost() function in

the same file is called, sending the App Secret as a parameter

to the MiniApp backend to obtain the user information. It can

be seen that the App Secret is explicitly written in the code

of the MiniApp. Instead, the correct approach to save it is to

encrypt and store it in the MiniApp’s backend program.

IV. APPROACH

To enable automatic detection of sensitive data leaks

from WeChat MiniApps, we develop a static analysis tool

called WEMINT. Figure 3 shows the overall architecture of

WEMINT.

2MiniApp name is anonymized for ethical considerations during paper
review period. The developer has acknowledged and fixed the issue.

1.requestLoginUserIdPost: function(o, a, s, i) {
2. /** some code **/
3. // Declare the parameters when sending HTTPS requests
4. var n = {code: o,encryptedData: a,appId: s,
5. secret: "******36605cf7c736974dc33f******", // App Secret
6. iv: i};
7. // Call wx.request() to send a request
8. wx.request({
9. url: "https://wxapp.zt****.com/****/****/****/****",
10. method: "POST", //Using the declared parameters
11. data: n,
12. header: {
13. "content type": "application/json;charset=utf 8"
14. },
15. /** some code **/
16. });
17.},

1.getUserInfo: function(t) {
2. /** some code **/
3. wx.login({
4. success: function(o) {
5. e.requestLoginUserIdPost(o.code, t.detail.encryptedData,

"wx01a1827d7f******", t.detail.iv);
6. },
7. fail: function(t) {}
8. })
9. /** some code **/
10.},

1.<view>
2. <image class="index_welcom_bg" mode="aspectFill"
3. src="../image/createWifiCodeBg.png">
4. <button bindgetuserinfo="getUserInfo"
5. openType="getUserInfo">Create My WiFi Code</button>
6. </image>
7.</view>

Fig. 2. App Secret Leaks Example

A. Overview

WEMINT is executed through the following three stages:

• Source code processing: The code package is decompiled

into its original source code and file directory structure, and

each page of the MiniApp is identified based on the page

path defined in app.json.

• Static analysis: This stage consists of the core function-

ality of WEMINT, including a taint detection engine for

searching potential data leak locations on the coarse-grained

level (to be detailed in Section IV-B), and a sensitive data

flow path analyzer for tracking the specific data leak path

on the fine-grained level (to be detailed in Section IV-C).

• Results analysis: Finally the results are aggregated and

processed in this stage.

B. Taint-based Sensitive Data Leak Detection

Considering the security issues of MiniApps are primarily

located in the JavaScript code of the logic layer, the taint-based

detection technique faces the following challenges intrinsic to

the JavaScript language. We first briefly enumerate them and

our insights for mitigating them, followed by the details.

• Difficulty of taint propagation due to the function-level
scope. We propose a context-based taint propagation model

according to the rules of variable scopes in MiniApps and

Javascript to bridge the gaps due to the scope restrictions (to

be detailed in Section IV-B2).

• Difficulty for handling asynchronous functions. We pro-

pose an AST-based taint detection technique that utilize the

AST structural features and callback functions for locating

1405

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Overall Architecture of WEMINT

Fig. 4. Static Analysis Model of WeChat MiniApp

the taint. This technique also exhibits better robustness

against obfuscation (to be detailed in Section IV-C).

1) Context-Based Taint Propagation Model (Solution for
Difficulty #1): To facilitate the taint propagation, we propose

a context-based model based on the rules of variable scopes in

MiniApps and JavaScript, as shown in Figure 4. The general

idea behind the model is to create a context for each code

segment that defines new variable scopes, and construct a

separate variable table in each context based on the propaga-

tion rules for variables in different scopes. The variable table

encompasses all variable definitions in that context derived

from static analysis. We specify the following 5 levels of

context, as detailed below.

• File Context: The file-level context is an abstraction of the

entire JavaScript file. From the rules of variable scopes in

JavaScript, file-level variables and constants can be accessed

and used in any scope of the file. The variable table of

this context stores the definitions of all variables at the file

level. In addition, due to the modularity introduced by the

ES6 version of JavaScript, other files or modules may be

introduced in the code via the import or require keywords.

Thus, we also introduce the concept of sibling contexts in

file-level contexts to construct relevant data dependencies.

A file-level context may have one or more sibling contexts,

and each sibling context is also a file-level context.

• File Function Context: This context is an abstraction of the

global file-level functions. These functions can be called in

member functions defined in the Page() of the MiniApps,

where tainted code may be present. The variable table of this

context stores the definitions of variables within the scope of

the file-level functions. According to the rules for variable

scopes in JavaScript, we consider the file-level context as

the parent of file function context.

• Object Context: This context is an abstraction of the

MiniApp objects. The variable table of this context stores

the variable values that are parsed from the object’s data
property. Similar to the file function context, the parent of

an object-level context is also a file-level context.

• Member Function Context: Member functions are functions

defined within the object constructors, typically inside App()
or Page() functions. The member function context is an

abstraction of them. The variable table of this context stores

the definitions of variables within the function scope. The

parent of this context is the object-level context.

• Block Context: In JavaScript, a code block wrapped by ’{}’

creates a new block scope, e.g., if and while statements

will create new variable scopes. The block-level context is

an abstraction of them. The variable table of this context

stores the definitions of variables in the current block scope.

Additionally, the parent-child relationship at the block level

arises when block nesting occurs.

2) AST-Based Taint Detection (Solution for Difficulty #2):
Detection flow. We generate an AST for each MiniApp’s

JavaScript code using Acorn [23]. We then traverse the AST in

a depth-first manner and perform taint detection following the

defined taint detection rules. The analysis process is illustrated

in Algorithm 1. Specifically, we identify the variable, function,

and Page() sections from the JavaScript code, and generate

each level of context beginning from the File Context (i.e.,

root node) to lower-level contexts based on the variable scopes

(lines 11 to 15).

The initial step takes place in the File Context where we

identify the variables and constants (lines 8 to 10) defined at

the file level. We perform a backward analysis to determine

the values of these variables and constants, and save them

in the variable table of the File Context. Next, we identify

the functions declared at the file level. For each function, we

generate a File Function Context that points to the File Context

as its parent. We then perform taint location and variable

analysis on these functions. Security issues in MiniApps can

1406

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Taint Detection Algorithm

Input: AST Root Node root,File Context fc,AST Node Visit Stack
S1=[root],Context Visit Stack S2=[fc],Taint Checker checker

Output: Taint Report report
1 Function taintDetection(S1,S2,checker):
2 while S1! = ∅ do
3 node ← S1.pop();
4 context ← S2.pop();
5 if node.type ∈ checker.taintNodeTypeSet then
6 checker.checkByRule(node, context);
7 end
8 else if isV ariableNode(node.type) then
9 variableV alue ←

backTraceAnalysis(node, context)
context.variableTable.update(node, variableV alue);

10 end
11 else if isContextNode(node.type) then
12 newContext ← createContext();
13 newContext.parent ← context;
14 S2.push(newContext);
15 end
16 foreach child node childNode of node.children do
17 if childNode! = null then
18 S1.push(childNode);
19 end
20 end
21 end
22 checker.analysisAndV erify();
23 report ← checker.generateReport();
24 return report;
25 End Function

Fig. 5. App Secret Leaks Detection Rule

vary in type, and require different rules for taint location and

analysis (lines 5 to 7). These rules need to be manually written

based on the specific characteristics of the taint.

In the process of determining the specific values of key

parameters in the tainted code, a backtracking operation is

performed based on the static analysis model, starting from

the current context and moving up the hierarchy to find the

value of the key parameter. If the parent context at the top level

cannot be found, the search continues in the sibling context.

Finally, we analyze the Page() function defined in the file

and create an Object Context with the File Context as its

parent. We first analyze all the member variables in the data
property of the function and put the values obtained from

the analysis into the variable table of this context. After that,

we analyze all the member functions defined in the Page()
function, and the analysis process is similar to the process of

analyzing the file functions.

App Secret Detection Rules. Using a simple example shown

in Figure 5, we explain how our App Secret detection rules

can be derived from AST, and how they are utilized for

the analysis. App Secrets typically function as parameters

Fig. 6. Other Obstacles of Taint Detection

when making HTTPS requests through wx.request(), which is

represented as the CallExpression node in the AST. Therefore,

we explicitly check for this type of node throughout the

traversal process. Upon identifying such node, the function

call within its child node MemberExpression is examined to

see if it corresponds to wx.request. If a match is found, the

parameters of this CallExpression node are inspected. Since

these parameters are represented as an ObjectExpression type,

all its properties are traversed to detect the presence of the

App Secret within the url and data properties.

Handling asynchronous function calls. During the develop-

ment process of MiniApps, various asynchronous scenarios

need to be handled. The MiniApp SDK provides numerous

asynchronous APIs that primarily use callback functions to

achieve asynchrony. However, tainted code may exist in these

callback functions. To deal with this scenario, we first try to

summarize the characteristics of the AST structure for asyn-

chronous functions. We find that on the AST, asynchronous

functions also have a function type node in their parameters

(child nodes), which is different from synchronous functions.

This can help us identify whether an API is asynchronous or

not. Specifically, we examined the code and AST structure

of known asynchronous APIs, and we found that they are

essentially function calls, with their AST structure consisting

of a CallExpression type node. To use these APIs, an Ob-

ject parameter defining the required properties and callback

function is passed. This Object parameter is represented by

an ObjectExpression node in the AST, which is a sub-node of

the Arguments node of the CallExpression node. The callback

function of the asynchronous API is a child element of this

ObjectExpression node. Using this structure, we analyzed the

callback functions of asynchronous APIs and the nested use of

multi-layer asynchronous APIs to identify any potential tainted

code within the callback functions.

3) Other Obstacles in Taint-Based Detection for JavaScript:
Although we have tackled significant challenges through

context-based model and AST, and yet some obstacles still

remain in practice.

One prominent obstacle we need to address is the variable

value analysis. While analyzing the tainted code, some key

1407

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

parameters may not be directly in the form of literal quantities,

but instead may be member variables of the object (e.g.,

a.data.secret,getApp().secret), member variables referenced by

the this keyword (e.g., this.secret) or variables defined directly

in the code (e.g., secret), as shown in Figure 6(a). We

respond to each of these situations with different tactics. When

encountering the case of type such as a.data.secret, where a
is an object variable, we traverse the AST generated by a in

depth first, get each property in a and store it in a dictionary

structure which is named ‘a’ to the variable table. We then

use a[data][secret] to obtain the value of secret. When we

encounter the getApp().secret case, we use app.js as a sibling

context to the current File Context. The member variables in

App() are analyzed in the same way and stored in a dictionary

structure, which has a global scope and from which the value

of secret is taken. As for member variables referenced by the

this keyword, they are taken directly from the variable table

of the current Object Context. The value of a directly defined

variable, such as secret, is obtained from the variable table of

the context in which the variable is located or by backtracking

analysis. This helps overcome the challenges in the variable

value analysis phase while analyzing tainted code.

Another obstacle we face is expression analysis. Some

key parameters of the tainted code may perform arithmetic

operations, as shown in Figure 6(b), where the url parameter

passed to wx.request() performs a splicing operation. To get

the specific value of the url after that operation, we have to

perform the same operation. However, since JavaScript is a

weakly typed language, it is difficult to determine the specific

type of each operand in an expression during analysis, and

thus the value of that expression. To solve this problem, we

first determine the value of each unknown variable in the

expression by backtracking the context. Then we construct

a JavaScript code string based on the operator and the value

of the unknown variable obtained from the analysis. Finally,

we execute the expression by calling the eval() function in

JavaScript to obtain the final result of the expression.

C. Sensitive Data Flow Path Analysis

To enable better understanding of the detected sensitive data

leaks, WEMINT also performs detailed data flow analysis that

reports the explicit transition paths of sensitive information

from the target source to the destination. We achieve this

through a three-step process: (i) identifying the data source;

(ii) designing the data tracking algorithm; (iii) constructing

and plotting the data propagation path for users to analyze.

This allows developers to better understand how the sensitive

data flows within their MiniApps, and help them pinpoint the

exact location of the data leak and take appropriate measures

to fix it.

Similar to traditional apps, the sensitive data accessed by

MiniApps mainly comes from two sources: one is user input

data, such as name, age, cell phone number; the other one is

the sensitive API usage, as they would require user’s privacy-

related authorization. Thus, we configure the data source as

sensitive data that potentially relates to taints propagated from

the previous coarse-grained taint detection stage. Meanwhile,

it is important to note that the flow analyzer is also capable

of tracking other generic type of data, which enables further

configurable and wider-range data flow analysis.

1) Data Tracking Algorithm: The objective of this step

is to track the propagation paths of sensitive data derived

from taint detection, which is different from the process of

identifying tainted code. Instead, we adopt a forward-detecting

approach to identify code involving sensitive data, and tag

it during data tracking. Specifically, our approach analyzes

taint code-located functions, event callback functions bound

by UI components, and return values from sensitive APIs. In

addition, other member functions of the Page() object may

also contain the use of sensitive APIs, and for other functions,

we only perform sensitive API return value tracing.

Algorithm 2: Data Flow Analysis Algorithm

Input: AST Root Node root,Key Parameters Set ps,Page
Object Properties pd,Page Object Member Functions
pf

Output: Data Flow Path path
1 Function dataFlowAnalysis(root,ps,pd,pf):
2 path← CreateNewPath();
3 if isSuspiciousNode(root.type) then
4 path.isKeyPath←

suspiciousCheck(node, ps, pd, pf);
5 end
6 foreach child node childNode of node.children do
7 if childNode! = null then
8 childPath←

dataFlowAnalysis(childNode,ps, pd,pf);
9 if childPath.isKeyPath then

10 path.next.append(childPath);
11 end
12 end
13 end
14 return path;
15 End Function

The algorithm for sensitive data flow path analysis is

shown in Algorithm 2. For the located callback function, we

construct its AST and perform a depth-first traversal, setting

that function node as the root node. To identify the key steps

involved in the propagation of sensitive data, we introduce the

concept of “critical paths”, which refer to the AST nodes that

pertain to the sensitive data identified (lines 3 to 5) during

the depth-first traversal. For nodes of branch statement type,

we then continue to execute the algorithm recursively (lines

6 to 13). As we execute the algorithm, we mainly solve the

following problems.

(i) Identification and parsing of sensitive data.
Functions with tainted code. As sensitive information can be

recklessly transmitted as parameters, we thus mark the param-

eters passed or variables used in the tainted code that involves

data transmission as sensitive data for further verification.

For example, App Secret could be passed as a parameter to

wx.request(). Otherwise, we simply mark the paths containing

the tainted code as critical for further analysis.

1408

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Takes The Value Entered By User

Callback function bound by UI components. After entering

information in the input component, encapsulated in the event

object as a parameter of the callback function for further use.

The value is then extracted as a member variable, as shown

in the Figure 7. The event object, represented by e, is passed

to the callback function, and the user input can be retrieved

using e.detail.value.

Return values from sensitive APIs. We have classified these

APIs into two categories: synchronous and asynchronous,

based on how they are used. Synchronous APIs directly in-

clude user privacy data in the return value, while asynchronous

APIs accept an object type parameter in which a callback

function can be defined. After a successful asynchronous API

call, the privacy data will be included in the parameters of the

success callback function.

Summary of analysis insights. When analyzing functions

related to sensitive data, a variable set is created. It is initial-

ized in various ways according to the generation of sensitive

data. For example, sensitive information from UI component

callback functions will be initialized and filled in the set with

e.detail, while the return value of asynchronous sensitive APIs

will be initialized and filled in the set with the parameters of

the success callback function. When searching the AST nodes,

we check whether the current node involves the key variables

stored in the variable set. If there is a new variable generated

by the key parameters in the variable set after operation or

manipulation in the current node, then the node will be marked

as a critical path node, and the new variable will be added

to the variable set as a key variable. In case of complex

expressions encountered during traversal, we transform the

AST structure to code and use string matching to determine

whether the expression is a critical path node.

(ii) Analysis of page object member variables. As aforemen-

tioned, member variables can be included in the page object

by using this.setData(). The user input and the return values

of the sensitive API can also be set as member variables of

the page by this.setData(), making them accessible by the this
keyword in other functions. We define a global page-data set
to collect all key variables with values set by this.setData().
Then, the critical path node analysis also checks whether the

current node uses sensitive data from the page-data set.

(iii) Cross-functional analysis. The main target of our anal-

ysis is the member functions defined in Page(). In MiniApps

there may be calls to other member functions, causing a break

in the data flow analysis. To overcome this, we maintain a

Fig. 8. Data Flow Graph

mapping from the member function name to the AST node of

that member function before analysis. Following the member

function calling rules, other member functions will be called in

the current function through this.member function name. Using

the mapping based on the member function name, we can

locate the corresponding AST node and continue to execute

the analysis algorithm with this node serving as the root node,

to address the problem of break in data flow analysis.

2) Construction of Sensitive Data Flow Paths: To construct

the sensitive data flow paths, we create different path nodes

based on the type of the AST nodes and create branch node

paths directly when encountering branch type nodes. When

encountering a critical path node, we create the corresponding

path based on the type of the critical path node. Once all paths

have been created, we draw the sensitive data flow graph using

Graphviz [24], an open source graph visualization tool that can

draw many types of graphs, especially suitable for generating

image results such as data flow diagrams.

3) Example Illustration: Figure 8 shows an example of

a path diagram of tainted flow in a MiniApp. The diagram

describes the tracking result of the App Secret leaks problem

in Figure 2. When the user clicks the Button to trigger

the getUserInfo() event function, wx.login() API is called in

the function, and the requestLoginUserIdPost() function is

called in the success callback function of the API. In the

requestLoginUserIdPost() function, the App Secret is hard-

coded into the Object variable n, which is sent as a parameter

to wx.request() API. Figure 8 fully describes all the key paths

related to the tainted flow propagation.

V. EVALUATION

In this section, we conduct experiments to evaluate

WEMINT. Our experiments were conducted on a Windows

10 system, powered by an 8-core Intel(R) Core(TM) i7-4790

processor clocked at 3.60GHz, and equipped with 16GiB of

RAM. In particular, we seek to answer the following research

questions (RQs):

• RQ1. How effective is WEMINT in detecting and prevent-

ing sensitive data leaks in MiniApps?

• RQ2. What is the prevalence of MiniApps with sensitive

data leaks in the wild?

• RQ3. How well does WEMINT perform compared with

state-of-the-art approach?

1409

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

A. Evaluation Subject

We used Mini-Crawler [14], an open source crawler that

is able to crawl MiniApps automatically, to collect a large

number of MiniApp packages from the app market of WeChat

to form our evaluation dataset. In total, we collected 115,392

MiniApps, occupying 261 GB of storage. To demonstrate the

effectiveness of WEMINT, we evaluate how WEMINT detects

App Secret leaks, a representative type of sensitive data leaks

in MiniApps. App Secret leaks are mainly caused by carelessly

programming, i.e., the developer explicitly writes the App

Secret in the MiniApp’s code. To find the MiniApps where

App Secret leaks may occur and filter out useless samples, we

first applied regular matching to pinpoint MiniApps from our

dataset that may potentially suffer from this security problem.

Specifically, we conducted a code scan on each MiniApp

using regular matching pattern to identify a 32-bit long string

composed of lowercase letters and numbers (i.e., the string

pattern of App Secret). If it matches, we assume the scanned

MiniApp as a suspicious MiniApp that may have App Secret

leaks. As a result, we identified 20,766 suspicious MiniApps

for further investigation.

B. RQ1: Effectiveness of WEMINT

1) Effectiveness of WEMINT’s Taint Detection: In this

evaluation, we first manually curate a benchmark of MiniApps.

We randomly selected 100 MiniApp packages for manual

inspection, and confirmed that 47 of them are positive samples

with App Secret leaks. We then apply WEMINT to these

100 MiniApps. The results showed that for the 47 positive

samples, WEMINT correctly identified 42 of them without

reporting false positives. Thus, WEMINT achieves a precision

of 100% (42/(42+0)), a recall of 89% (42/(42+5)) and an

accuracy of 95% ((42+53)/100). In fact, as our detection

rule is tailored to the usual scenarios of App Secret leaks,

WEMINT is expected to exhibit zero false positives but might

encounter some potential misses (ignoring the corner cases

where decompilation fails). In addition, the average time cost

for taint detection of each MiniApp was 3.11 seconds. These

results show that WEMINT can effectively and efficiently

detect data leaks in MiniApps.

2) Effectiveness of WEMINT’s Sensitive Data Flow Path
Analysis: WEMINT’s sensitive data flow path analyzer is

designed initially to track specific data leak paths, but in

practice it can serve as a generic data flow analysis tool

that enables tracing of any data of interest. For example, in

MiniApps, the uses of sensitive APIs pose a potential security

risk because they provide access to data that is highly valuable

and confidential. Thus, tracking the data flow of sensitive API

return values is an important way to ensure that sensitive

data is stored and accessed securely. WEMINT, fortunately,

is equipped with this capacity. Thus, we conduct another

evaluation of WEMINT’s generic data tracking capability.

Specifically, we apply WEMINT to track the data flows of

sensitive data commonly used in MiniApps and manually

inspect the data flow paths to evaluate the effectiveness of

the data flow path analyzer.

TABLE I
ELEMENTS OF THE UI INTERFACE THAT CAN INTERACT WITH THE USER

Classification Example Features

Components with open-
type attributes that provide
special functionality

<button> Bind event callback func-
tions using properties with
the bind keyword

Forms, input boxes, and
other components that col-
lect user input

<form>,<input>,etc Bind event callback func-
tions using properties with
the bind or catch key-
words

Developer-defined compo-
nents

None The location of the code
defining the components
can be found in the con-
figuration file

Collect user data using
canvas, media and map

map, media selection and
other components

The corresponding API
can be found in the logic
layer callback function

Evaluation Setup. In this evaluation, we concern about two

types of sensitive data in MiniApps, i.e., user input data and

sensitive API return values, as they are representative data

sources for taints (as discussed in Section IV-C). Specifically,

we use the data entered through UI and the data returned by

calling sensitive APIs of MiniApps as the primary sources for

sensitive data flow path analysis.

In the UI layout file, we have classified UI elements that

can obtain user data and trigger event operations into four

categories in Table I. (i) WeChat-offered components with the

open-type attribute, such as the button component, which can

specify button behavior and obtain user information through

specified callback functions; (ii) Components that collect user

input data, such as form and input box components, which

use properties containing the ”bind” or ”catch” keywords to

bind callback functions for receiving or processing user input

data; (iii) Custom components developed by the developer for

component reuse, which may include basic components for

accepting user input, and whose paths can be found in the page

configuration file; and (iv) Components that use canvas, media,

map, and other way to collect user input information, which

require the use of APIs provided by WeChat for collecting

user information and can be found directly in the logical layer

code without analyzing the UI interface.

In terms of sensitive APIs, since there is no predefined list of

sensitive APIs available, we manually reviewed the developer

documentation for all APIs and filtered them according to their

functions, identifying 27 APIs that involve users’ private data,

as shown in Table II.

We randomly selected 20 MiniApps, and used WEMINT

to extract event callback functions from the view layer as

well as the return values of sensitive APIs to track them.

Next, we manually analyzed the tracking results to assess the

effectiveness of WEMINT’s sensitive data flow path analysis.

Results. Table III shows the detailed results of our sensi-

tive data flow path analysis for 20 MiniApps. Specifically,

of pages indicates how many pages are included in the

MiniApp, User Input Data and Sensitive API indicates

that the sources of sensitive data are from user interaction

events in the view layer or return values of the sensitive APIs,

respectively. Through manual inspection, we categorize the

1410

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SYNCHRONOUS AND ASYNCHRONOUS SENSITIVE APIS.

Classification APIs Sensitive Info

Sync APIs

wx.getSystemSetting System Info
wx.getSystemInfoSync System Info
wx.getDeviceInfo Device Info
wx.createCameraContext Camera

Async APIs

wx.getSystemInfoAsync System Info
wx.getSystemInfo System Info
wx.requestPluginPayment Payment Info
wx.requestPayment Payment Info
wx.chooseVideo Video
wx.chooseMedia Image&Video
wx.startRecord Audio
wx.chooseImage Image
wx.startLocationUpdateBackground Location
wx.startLocationUpdate Location
wx.getLocation Location
wx.onLocationChange Location
wx.getFuzzyLocation Location
wx.chooseLocation Location
wx.choosePoi Location
wx.chooseAddress Address
wx.login User Info
wx.getUserProfile User Info
wx.getUserInfo User Info
wx.getWeRunData WeRun
wx.chooseLicensePlate CarPlate
wx.chooseContact Contact
wx.getClipboardData Clipboard

TABLE III
RESULTS OF SENSITIVE DATA FLOW PATH ANALYSIS

MiniApp ID # of Data Flow
Total Correct Error Miss Time

pages User Input
Data

Sensitive
APIs spent

wx000b96cc50****** 5 9 5 14 12 0 2 45.12s
wxbf990623a5****** 13 18 4 22 20 1 1 36.86s
wx0b72e410af****** 11 18 0 18 18 0 0 63.88s
wx0b21a6cf7a****** 23 55 11 66 62 1 3 54.16s
wx00dbd76979****** 16 34 3 37 36 0 1 25.16s
wx0c87dc4e32****** 17 14 1 15 11 3 1 28.82s
wx0cb2d24f07****** 9 18 0 18 16 2 0 34.47s
wx0ac876a29a****** 7 8 10 18 15 0 3 56.95s
wx0f1f69246e****** 9 10 2 12 12 0 0 29.21s
wx2aefd30c27****** 18 28 6 34 28 2 4 28.90s
wx0d78a195bf****** 5 5 1 6 4 1 1 24.26s
wx1f67e18769****** 9 14 0 14 14 0 0 32.86s
wx3ba311e0a4****** 7 2 6 8 6 0 2 32.18s
wx2a58adda69****** 13 18 2 20 18 1 1 43.03s
wx0e08ba7d02****** 9 14 0 14 14 0 0 34.14s
wx0e8be68d7f****** 8 26 2 28 24 1 3 75.64s
wx0e3a760cb2****** 15 30 8 38 36 0 2 36.51s
wx0f160dddb0****** 6 31 3 34 34 0 0 31.05s
wx1b4851d9c7****** 6 6 1 7 6 0 1 12.11s
wx0f4b126998****** 11 14 2 16 16 0 0 32.40s

Total / 372 67 439 402 12 25 /

quality of the generated data flow paths using three labels:

Correct denotes that a recognized data flow path is correct

and complete; Error denotes that a recognized data flow is

wrong or broken; Miss denotes that a data flow in the code

failed to be recognized. Overall, WEMINT identified a total

of 439 data flow paths, of which 402 were correctly identified,

12 were incorrectly identified, and 25 were missed. WEMINT

achieved an accuracy of 91.57% in the module of sensitive

data flow path analysis. Note that in our evaluation we define

only sources but not sinks. This is because some APIs that

can be used as sink can be encapsulated by developers, and

defining an explicit sink point may cause WEMINT to miss

some data flows.

We also measure the time cost of WEMINT for sensitive

data flow path analysis (Column T imespent). The average

TABLE IV
DISTRIBUTION OF THE NUMBER OF USERS OF MINIAPPS WITH APP

SECRET LEAKS.

Visit Total Count Percentage
[0,10000) 7011 92.43%
[10000,20000) 162 2.14%
[20000,50000) 204 2.69%
[50000,100000) 88 1.16%
[100000,1000000) 101 1.33%
[1000000,10000000) 18 0.24%
[10000000,60000000) 1 0.01%

time spent for a MiniApp was 37.89s, with the longest time

being 75.64s, and the shortest time being 12.11s. We observe

that the time spent is not proportional to the number of pages,

because time-consuming operations are mainly spent on AST

traversal and analysis. In general, the data flow path analysis

takes a longer time for more complex JavaScript code structure

(e.g., having a large number of code blocks and nested callback

functions).

C. RQ2: Prevalence of Sensitive Data Leaks

RQ2 aims to understand how many MiniApps with App

Secret leaks WEMINT can find in the wild. For the selected

20,766 suspicious MiniApps, we applied WEMINT to perform

taint detection, and successfully confirmed 7,585 MiniApps

with App Secret leaks, accounting for 36.5% of the MiniApps

in our dataset. Note that the AST-based detection for App

Secret utilized by WEMINT is highly reliable. As indicated

by the results in RQ1, all the MiniApps flagged by WEMINT

are true positives with App Secret leak issues. Therefore, the

identified 7,585 leaks are confirmative. In other words, there

are at least 7,585 MiniApps in our dataset that have security

leak issues.

To show the impacts of these data leaks, we next measure

the number of users for these 7,585 MiniApps with App

Secret leaks, as shown in Table IV. V isit Total represents the

cumulative number of users of a MiniApp, which is obtained

by making requests to the interface provided by WeChat after

acquiring the Access Token through App Secret and MiniApp

ID. Note that the statistics are up to October 1, 2022. We

can see that these MiniApps with such sensitive data leaks

have a user base ranging from 2 to 53 millions. Over half

of the MiniApps have a user base of less than 238 and 92%

have a user base less than 10,000. This indicates that most of

the MiniApps with sensitive data leaks have a limited number

of users, while there are indeed a few of them with large

user bases. Table V shows the top 10 MiniApps ranked by

the cumulative number of users. Share PV represents the

number of retweets of the MiniApp and Share UV represents

the number of users who retweeted the MiniApp. We can see

that the highest ranked MiniApp has 53,000,256 users, and the

other MiniApps have a minimum of 1.5+ million users. Any

attack launched by hackers on these MiniApps would have

severe consequences given their user bases.

1411

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

TABLE V
TOP 10 MINIAPPS WITH APP SECRET LEAKS BY NUMBER OF USERS.

MiniApp ID Visit Total MiniApp ID Visit Total
wx845a2f34af****** 53,000,**6 wx01a1827d7f****** 2,789,**5
wxd3448d9870****** 7,414,**5 wx781693d468****** 2,741,**0
wx3db9d150cb****** 5,147,**2 wx3da0e7ce42****** 1,932,**5
wx5103f6e064****** 4,127,**7 wxad40758d7c****** 1,620,**3
wx507477e9ca****** 3,197,**3 wx8c01564d8a****** 1,565,**0

D. RQ3: Comparison with State-of-the-art

In this RQ, we compare WEMINT with the state-of-the-art

open-source tool TAINTMINI [25] on ground truth dataset.

TAINTMINI is a static taint analysis framework developed

based on DoubleX3 [19] for detecting flows of sensitive data

in MiniApps. To this end, we utilize both tools to detect

App Secret leaks and analyze sensitive data flow paths, and

compare their output results. Specifically, we apply the tools

to 20 representative MiniApps with App Secret leaks and

conduct quantitative and qualitative analysis to demonstrate

the superiority of WEMINT.

App Secret Leak Detection. Table VI illustrates the com-

parative results of WEMINT and TAINTMINI in App Secret

leak detection. None of these App Secret Identifiers are

recognized by TAINTMINI, which indicates the necessity of

the ingenious design of WEMINT on specific tasks. We

attribute the poor performance of TAINTMINI to its focus

on identifying only Object identifiers while overlooking

key-value pairs within it. For instance, in the most common

App Secret leakage scenario, developers hardcode the Secret

value in the globalData object of App.js, represented by

the key-value pair {secret: hardcode-hex-string}.

However, TAINTMINI only considers the object identifier

globalData in the data flow analysis and overlooks the

fine-grained analysis of key-value pairs.

Sensitive Data Flow Path Analysis. For a more detailed and

comprehensive comparison, we assign the same source and

sink APIs to both WEMINT and TAINTMINI, and evaluate

the performance of detecting sensitive data flow paths on

the ground truth benchmark. Table VII records the detailed

results of sensitive data flow paths detected by both frame-

works. For the 224 sensitive data flow paths in the ground

truth, WEMINT successfully detected 202 out of them, while

TAINTMINI detected 152. Additionally, TAINTMINI produced

2 false positives due to mistakenly detecting JavaScript files

from unregistered pages.

VI. DISCUSSION

1) Performance Influencing Factors: First, JavaScript is

a programming language that supports both procedural and

functional programming, with all values in JavaScript being

objects. The language’s design has been enhanced by its event-

driven and non-blocking capabilities since ES6. These features

make it very flexible when writing JavaScript code, but their

3DoubleX is a static analysis tool designed to help developers identify
potential data leaks in browser extensions. As both browser extensions and
MiniApps are primarily developed in JavaScript, DoubleX can be used to
analyze MiniApps.

TABLE VI
COMPARASION WITH TAINTMINI ON THE EFFECTIVENESS OF TAINT

DETECTION

MiniApp ID Identifier WEMINT TAINTMINI

wx000b96cc50****** app_key_ald � �

wx000d416d0d****** e[appSecret] � �

wx00a796d7b4****** page[secret] � �

wx00b1b2de34****** wx.request.data[secret] � �

wx00b74f75f6****** globalData[secret] � �

wx00b77e32b1****** globalData[secret] � �

wx00b94fba35****** globalData[secret] � �

wx00bb88373f****** c[APPSECRET] � �

wx00c462d1bc****** globalData[secret] � �

wx00cc9fcdbf****** d[appKey] � �

wx00cd02ab1e****** c[APPSECTRE] � �

wx00dbd76979****** globalData[secret] � �

wx00e1bf5a0c****** e[APPSECRET] � �

wx00e400c360****** globalData[secret] � �

wx00e4a41b44****** globalData[secret] � �

wx00e589a1ff****** globalData[secret] � �

wx00eb4375fb****** e[APPSECRET] � �

wx00eb6c28c7****** globalData[secret] � �

wx00eee55cb5****** globalData[secret] � �

wx00fdc948cb****** _[APP_SECRET] � �

TABLE VII
COMPARASION WITH TAINTMINI ON THE EFFECTIVENESS OF SENSITIVE

DATA FLOW PATH ANALYSIS

MiniApp ID GT1 WEMINT TAINTMINI
TP FP FN TP FP FN

wx000b96cc50****** 3 3 0 0 3 2 0
wx000d416d0d****** 6 6 0 0 5 0 1
wx00a796d7b4****** 8 8 0 0 8 0 0
wx00b1b2de34****** 2 2 0 0 2 0 0
wx00b74f75f6****** 6 5 0 1 5 0 1
wx00b77e32b1****** 2 2 0 0 1 0 1
wx00b94fba35****** 3 3 0 0 3 0 0
wx00bb88373f****** 20 20 0 0 5 0 15
wx00c462d1bc****** 20 18 0 2 13 0 7
wx00cc9fcdbf****** 6 6 0 0 6 0 0
wx00cd02ab1e****** 19 19 0 0 5 0 14
wx00dbd76979****** 3 3 0 0 3 0 0
wx00e1bf5a0c****** 36 28 0 8 17 0 19
wx00e400c360****** 45 44 0 1 40 0 5
wx00e4a41b44****** 14 9 0 5 9 0 5
wx00e589a1ff****** 3 3 0 0 3 0 0
wx00eb4375fb****** 11 8 0 3 9 0 2
wx00eb6c28c7****** 4 3 0 1 3 0 1
wx00eee55cb5****** 1 0 0 1 0 0 1
wx00fdc948cb****** 12 12 0 0 12 0 0

Total 224 202 0 22 152 2 72
1 GT stands for the ground truth dataset.

complexity also limits the accuracy of the analysis algorithm

due to the large number of statement combinations that it

cannot cover. In addition, since our static analysis process is

performed on the MiniApps’ source code, we use an unpacker

tool to decompile the MiniApps to access to the source code.

There are a small number of MiniApps experienced issues

during the decompilation process, such as the code package

cannot be properly decompiled, or the normal structure of

the decompiled code is destroyed, or the decompiled code is

obfuscated to a high degree, etc., which can have an impact

on the static analysis results. Nevertheless, only 0.2% of

MiniApps in our dataset were affected by the decompilation

1412

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

issues, indicating a very limited impact.

2) Limitations: While WEMINT has proved to be an ef-

fective tool for identifying sensitive data leaks in WeChat

MiniApps, it has some limitations. First, the accuracy of

WEMINT’s analysis results is affected by the complexity of

the JavaScript code. If the code is highly obfuscated and has

a complex structure, the detection coverage of the analysis

results may be reduced. Second, during the sensitive data flow

path analysis, we could identify data returned by sensitive

APIs as sensitive data, but for user input data we were unable

to determine if it was indeed sensitive data. In response,

WEMINT tracks all the user input data and may produce

false positives. This can be mitigated by adapting existing

works [26] to analyze the sensitive data types of user input

data. Third, the existing detection strategy in WEMINT may

not be able to cover all code combinations because it is

generated by manual analysis, which inevitably leads to some

omissions. Continuous improvement is required to enhance the

capabilities of the tool.

3) Extension and Generalization of WEMINT: In this

study, WEMINT is designed to discover sensitive data leaks

for WeChat MiniApps, and tracking sensitive data flow paths.

In fact, WEMINT is extensible, allowing developers to develop

a customized detection strategy for MiniApps based on the

characteristics of the bugs they want to identify. This flexi-

bility enables WEMINT to adapt to the ever-changing threat

landscape and stay effective in detecting new types of sensitive

data leaks. In terms of generalization, as WEMINT works

on the basis of ASTs generated for the JavaScript language,

it is applicable to all traditional MiniApps frameworks that

use JavaScript as the development language for the logic

layer (including WeChat, Alipay, etc.). However, for some

MiniApps developed by multi-terminal unified development

frameworks such as uni-app, Taro etc., WEMINT still needs

future work to adapt.

VII. RELATED WORK

A. Analysis on MiniApps

As an emerging application paradigm in parallel to the

existing web [27], [28] and mobile [29] systems, MiniApps

have received attention from the research community only in

the recent years. We characterize the prior works according to

the following three aspects.

1) Understanding MiniApp Application and Architecture:
A considerable portion of the research focuses on under-

standing the application and architecture of MiniApps [4],

[12], [13]. More recently, Zhang et al. [14] designed Mini-

Clawer, and then analyzed the security practices of the crawled

MiniApps. They focus on whether the MiniApp code was

obfuscated and which security-related APIs were involved.

2) Security Analysis of MiniApps: Several studies have

focused on the security of MiniApps [1], [16]. In particular,

Wang et al. [15] collected 83 MiniApp bugs from the real

world and proposed WeDetector to detect WeBugs with three

bug patterns. Zhang et al. [17] identified a novel privacy

disclosure problem in MiniApps that can lead to the theft of

private data held by the MiniApp platform. They illustrated

an attack process that exploits this vulnerability.
3) MiniApp Analysis and Optimization Tools: A few studies

have focused on MiniApp analysis and optimization tools.

Liu et al. [30] designed WeJalangi, an efficient dynamic

analysis framework for WeChat MiniApps based on the ex-

isting JavaScript dynamic analysis framework Jalangi [31].

However, they did not open-source it. Additionally, Li et al.

[32] proposed a cross-learning search model for user fuzzy

search. This model can assist users in finding the desired

search results more easily.

B. Analysis on Javascript
There are numerous studies on JavaScript in the context

of web security [33]–[37]. Melicher et al. [38] modified

browsers and used dynamic taint analysis to detect possible

vulnerabilities in web applications. DoubleX [19] investi-

gated security issues in browser extensions and examined the

JavaScript code of browser extensions using static analysis.

In terms of JavaScript code analysis tools, there have been

continued contributions in the community [39], [40]. JSAI

[41] can convert JavaScript code into an intermediate language

(IR) for static analysis. JSFlow [42] implements information

flow tracking by performing dynamic analysis of JavaScript.

SAFE [43] is an extensible parser that supports JavaScript AST

rewriting and control flow graph analysis. Additionally, several

tools are available to detect concurrency in Node.js, such as

NodeAV [44], NRace [45], NodeRacer [46], and Node.fz [47].

Some work has also been done to detect analysis of client-

side JavaScript, such as RClassify [48], AutoFLox [49],

SymJS [50], JAW [51], and Adgraph [52].

VIII. CONCLUSION

Based on the analysis of potential security and privacy

risks in WeChat MiniApps, we propose a novel framework,

WEMINT, that uses abstract syntax trees to identify tainted

code and trace the path of sensitive data flows. Our experi-

mental results demonstrate that WEMINT can effectively and

efficiently detect vulnerabilities to sensitive information leaks

in MiniApps. By applying WEMINT to over 20K suspicious

MiniApps, we discovered that over 7.5K (36.5%) of them

have sensitive data leaks. Furthermore, our results indicate

that WEMINT outperforms the state-of-the-art DoubleX based

system in some aspects. These findings highlight the impor-

tance of using innovative approaches to ensure the security

and privacy of WeChat MiniApps. In the future, we plan to

extend WEMINT to address other types of security and privacy

risks in MiniApps and explore the feasibility of integrating

WEMINT into the development process of WeChat MiniApps.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D

Program of China (2021YFB2701000), the National Natural

Science Foundation of China (grant No.62072046, 62172049),

Knowledge Innovation Program of Wuhan-Basic Research

and HUST-FiberHome Joint Research Center for Network

Security.

1413

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root
causes, attacks, and vulnerability detection,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 3079–3092.

[2] “ecommerce saas solution by wechat: a com-
plete guide,” https://wechatwiki.com/wechat-resources/
wechat-mini-shop-ecommerce-solution/, 2022.

[3] Q. Rao and E. Ko, “Impulsive purchasing and luxury brand loyalty in
wechat mini program,” Asia Pacific Journal of Marketing and Logistics,
2021.

[4] L. Hao, F. Wan, N. Ma, and Y. Wang, “Analysis of the development of
wechat mini program,” in Journal of Physics: Conference Series, vol.
1087, no. 6. IOP Publishing, 2018, p. 062040.

[5] Y. Qian and A. Hanser, “How did wuhan residents cope with a 76-day
lockdown?” Chinese Sociological Review, vol. 53, no. 1, pp. 55–86,
2021.

[6] “White paper on internet development of miniapps in 2021,” https://
aldzs.com/viewpointarticle?id=16175, 2022.

[7] “General data protection regulation,” https://commission.europa.eu/law/
law-topic/data-protection en, 2022.

[8] “California consumer privacy act,” https://oag.ca.gov/privacy/ccpa, 2022.
[9] “Act on the protection of personal information,” https://www.ppc.go.jp/,

2022.
[10] “Personal data protection act,” https://www.pdpc.gov.sg/, 2022.
[11] “Configuring user privacy protection guidelines for miniapps,” https:

//www.aldzs.com/viewpointarticle?id=16573, 2023.
[12] A. Cheng, G. Ren, T. Hong, K. Nam, and C. Koo, “An exploratory

analysis of travel-related wechat mini program usage: affordance the-
ory perspective,” in Information and Communication Technologies in
Tourism 2019: Proceedings of the International Conference in Nicosia,
Cyprus, January 30–February 1, 2019. Springer, 2019, pp. 333–343.

[13] L. Ma, L. Wang, and E. Jiang, “Empirical study on the wechat mini
program acceptance based on uta ut model take the pearl river delta as
an example,” in 2018 15th International Conference on Service Systems
and Service Management (ICSSSM). IEEE, 2018, pp. 1–6.

[14] Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A mea-
surement study of wechat mini-apps,” ACM SIGMETRICS Performance
Evaluation Review, vol. 49, no. 1, pp. 19–20, 2021.

[15] T. Wang, Q. Xu, X. Chang, W. Dou, J. Zhu, J. Xie, Y. Deng, J. Yang,
J. Yang, J. Wei et al., “Characterizing and detecting bugs in wechat
mini-programs,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 363–375.

[16] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security, 2020, pp. 569–585.

[17] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in {WebView-based} mobile
app-in-app ecosystems,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1597–1613.

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[19] A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1789–1804.

[20] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML DOM
and Browser API in Static Analysis of JavaScript Web Applications,”
in FSE, 2011, p. 59–69.

[21] “Wemint,” https://anonymous.4open.science/r/WEMINT, 2023.
[22] “Weixin markup language,” https://developers.weixin.qq.com/

miniprogram/dev/reference/wxml, 2022.
[23] “Acorn-a small, fast, javascript-based javascript parser,” https://github.

com/acornjs/acorn, 2022.
[24] “Graphviz is open source graph visualization software,” https://graphviz.

org/, 2022.
[25] C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting

flow of sensitive data in mini-programs with static taint analysis,” in Pro-
ceedings of the 45th International Conference on Software Engineering,
2023.

[26] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“{SUPOR}: Precise and scalable sensitive user input detection for
android apps,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 977–992.

[27] K. Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong, “It’s Not Just the Site,
It’s the Contents: Intra-domain Fingerprinting Social Media Websites
Through CDN Bursts,” in WWW, 2021.

[28] K. Wang, Y. Ling, H. Wang, G. Bai, and J. S. Dong, “Are they Toeing
the Line? Auditing Privacy Compliance among Browser Extensions,”
SIGMETRICS.

[29] K. Wang, Y. Zheng, Q. Zhang, G. Bai, Q. Mingchuang, D. Zhang, and
J. S. Dong, “Assessing Certificate Validation User Interfaces of WPA
Supplicants,” in MobiCom, 2022.

[30] Y. Liu, J. Xie, J. Yang, S. Guo, Y. Deng, S. Li, Y. Wu, and Y. Liu, “Indus-
try practice of javascript dynamic analysis on wechat mini-programs,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1189–1193.

[31] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[32] H. Li, Z. Liu, S. Xu, Z. Lin, and X. Chen, “How to find it better? cross-
learning for wechat mini programs,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 2753–2761.

[33] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale
detection of dom-based xss,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 1193–
1204.

[34] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities.” in USENIX
Security Symposium, vol. 10, 2010, pp. 339–354.

[35] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-
driven static analysis of node.js applications,” ser. ESEC/FSE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
455–465. [Online]. Available: https://doi.org/10.1145/3338906.3338933

[36] S. Wei and B. G. Ryder, “Practical blended taint analysis for
javascript,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 336–346. [Online].
Available: https://doi.org/10.1145/2483760.2483788

[37] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg, “Saving the world wide web from vulnerable javascript,” in
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ser. ISSTA ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 177–187. [Online]. Available:
https://doi.org/10.1145/2001420.2001442

[38] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding out
domsday: Towards detecting and preventing dom cross-site scripting,”
in 2018 Network and Distributed System Security Symposium (NDSS),
2018.

[39] S. Guarnieri and V. B. Livshits, “Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code.” in USENIX
Security Symposium, vol. 10, 2009, pp. 78–85.

[40] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript.”
in SAS, vol. 9. Springer, 2009, pp. 238–255.

[41] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarra-
cino, B. Wiedermann, and B. Hardekopf, “Jsai: A static analysis platform
for javascript,” in Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering, 2014, pp. 121–132.

[42] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking
information flow in javascript and its apis,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014, pp. 1663–1671.

[43] J. Park, Y. Ryou, J. Park, and S. Ryu, “Analysis of javascript web
applications using safe 2.0,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 59–62.

[44] X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang, “Detecting
atomicity violations for event-driven node. js applications,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 631–642.

[45] X. Chang, W. Dou, J. Wei, T. Huang, J. Xie, Y. Deng, J. Yang, and
J. Yang, “Race detection for event-driven node. js applications,” in

1414

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 480–491.

[46] A. T. Endo and A. Møller, “Noderacer: Event race detection for node. js
applications,” in 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST). IEEE, 2020, pp. 120–130.

[47] J. Davis, A. Thekumparampil, and D. Lee, “Node. fz: Fuzzing the server-
side event-driven architecture,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 145–160.

[48] L. Zhang and C. Wang, “Rclassify: classifying race conditions in
web applications via deterministic replay,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 278–288.

[49] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion. IEEE, 2012, pp. 31–40.

[50] G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing
of javascript web applications,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 449–459.

[51] S. Khodayari and G. Pellegrino, “Jaw: Studying client-side csrf with
hybrid property graphs and declarative traversals,” in USENIX Security
Symposium, 2021.

[52] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 763–
776.

1415

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

