
Covana: Precise Identification of Problems in Pex

Xusheng Xiao1 Tao Xie1 Nikolai Tillmann2 Jonathan de Halleux2

1Dept. of Computer Science, North Carolina State University, Raleigh, NC
2Microsoft Research, One Microsoft Way, Redmond, WA

1{xxiao2,txie}@ncsu.edu, 2{nikolait,jhalleux}@microsoft.com

ABSTRACT

Achieving high structural coverage is an important goal of
software testing. Instead of manually producing test inputs
that achieve high structural coverage, testers or developers
can employ tools built based on automated test-generation
approaches, such as Pex, to automatically generate such test
inputs. Although these tools can easily generate test inputs
that achieve high structural coverage for simple programs,
when applied on complex programs in practice, these tools
face various problems, such as the problems of dealing with
method calls to external libraries or generating method-call
sequences to produce desired object states. Since these tools
are currently not powerful enough to deal with these various
problems in testing complex programs, we propose coopera-
tive developer testing, where developers provide guidance
to help tools achieve higher structural coverage. In this
demo, we present Covana, a tool that precisely identifies
and reports problems that prevent Pex from achieving high
structural coverage. Covana identifies problems primarily
by determining whether branch statements containing not-
covered branches have data dependencies on problem candi-
dates.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Measurement, Reliability

Keywords

Structural test generation, dynamic symbolic execution, data
dependency, problem identification

1. INTRODUCTION
Achieving high structural coverage (e.g., statement cov-

erage, block coverage and branch coverage) is an important
goal of software testing. However, manually producing high-
covering test inputs for achieving high structural coverage is
labor-intensive. To address the issue, testers or developers
can employ tools built based on state-of-the-art automated
test-generation approaches to automatically generate test

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

inputs, such as Pex [5] built based on Dynamic Symbolic
Execution (DSE) [3,4] (also called concolic testing [4]).

Although automated test-generation tools can achieve high
structural coverage for simple programs easily, these tools
face challenges in generating test inputs to achieve high
structural coverage when they are applied on complex pro-
grams in practice. Our preliminary study [8] shows that
many statements or branches are not covered due to two ma-
jor types of problems: (1) the external-method-call problem
(EMCP), where method calls to external libraries throw ex-
ceptions to abort test executions, or their return values are
used to decide subsequent branches, causing the branches
not to be covered; (2) the object-creation problem (OCP),
where tools fail to generate sequences of method calls to
construct desired object states for non-primitive method ar-
guments or receiver objects to cover certain branches.

Since these automated tools could not be powerful enough
to deal with various complicated situations in real-world
code bases automatically, we propose a new methodology
of cooperative developer testing, where developers provide
corresponding guidance to help the tools address the prob-
lems. One challenge in this methodology is that the tools
need to report the encountered problems and narrow down
the investigation scope, thus reducing the required efforts
from the developers.

To explore the methodology of cooperative developer test-
ing, our research centers around Pex [5], a state-of-the-art
automated test-generation tool built for DSE. Pex takes as
inputs the program under test or Parameterized Unit Tests
(PUT) [6], i.e., unit test methods with parameters. Pex ex-
plores the program under test symbolically, and produces
test inputs for the program under test or PUTs. Pex also
outputs the achieved block coverage in the format of HTML
reports. When applied on complex programs in practice,
Pex cannot easily achieve high structural coverage mainly
due to OCPs and EMCPs. To help Pex achieve higher struc-
tural coverage, developers can provide guidance to help Pex
solve the problems. For example, to deal with OCPs, de-
velopers can specify factory classes [5] that encode desired
method sequences for non-primitive object types. To deal
with EMCPs, developers can configure Pex to instrument
the external-method calls or provide mock objects [7] to sim-
ulate environment dependencies. By taking these guidances,
Pex can be re-applied to achieve higher coverage.

To achieve this cooperative developer testing, Pex needs
to inform the developers of what problems prevent Pex from
achieving high structural coverage. Indeed, Pex reports var-
ious types of encountered problems during test generation

{xxiao2, txie}@ncsu.edu
{nikolait, jhalleux}@microsoft.com


Figure 1: Architecture of Covana

and execution. For example, EMCPs are reported as prob-
lems of uninstrumented methods and external methods [5]
and OCPs are reported as object creation problems. How-
ever, many of the reported problems are not the causes for
Pex not to achieve high coverage. Such problems are referred
to as irrelevant problem candidates. For example, Pex re-
ports an EMCP when an external method is invoked during
test execution, resulting in many false warnings. Pex reports
OCPs when it fails to generate desired object states of pro-
gram inputs to satisfy some path conditions. However, Pex
does not analyze which fields of the program inputs require
desired object states. These irrelevant problem candidates
require extra efforts from the developers to identify the real
problems that prevent Pex from achieving high coverage.

To address the challenge of reporting problems that pre-
vent Pex from achieving high coverage and reducing the ef-
forts of developers in providing guidance to Pex, we devel-
oped Covana1, a tool that precisely identifies the problems
(with the focus on EMCPs and OCPs) that prevent auto-
mated test-generation tools from achieving high structural
coverage. Our Covana tool identifies problems by dynam-
ically computing data dependencies of branch statements
containing not-covered branches (referred to as partially-
covered branch statements) and pruning problem candidates
(referred to as irrelevant ones) that partially-covered branch
statements have no data dependencies on. To identify EM-
CPs, our Covana tool identifies as problem candidates the
invoked external methods and prunes irrelevant external-
method calls by using the exception information and the
data dependencies on external-method calls for their return
values. To identify OCPs, Covana computes data depen-
dencies of partially-covered branch statements on program
inputs and their fields, and analyzes the field declaration
hierarchy constructed from the fields that partially-covered
branch statements have data dependencies on up to program
inputs to identify the fields that require desired object states
to cover certain not-covered branches.

2. COVANA ARCHITECTURE
Covana consists of three main steps: (1) identifying prob-

lem candidates using runtime information; (2) assigning sym-
bolic values to elements of problem candidates (such as re-
turn values of external-method calls) and performing for-
ward symbolic execution [5] using test inputs generated by

1The release of Covana is available at
http://research.csc.ncsu.edu/ase/projects/covana.
The demo video of Covana is available at
http://research.csc.ncsu.edu/ase/projects/covana/covana.html

the tools as program inputs; (3) pruning the irrelevant prob-
lem candidates that none of partially-covered branch state-
ments have data dependencies on. Figure 1 shows the high-
level overview of Covana’s architecture. The architecture
consists of three major components: the forward symbolic
executor, the data-dependence analyzer, and the Graphic
User Interface (GUI) component. The forward symbolic
executor takes as inputs a program or Parameterized Unit
Tests (PUT) [2] and produces test inputs, the achieved cov-
erage information, and the runtime information (e.g., sym-
bolic expressions of predicates in branch statements and ex-
ceptions). The data-dependence analyzer takes the coverage
information and the runtime information as inputs and pro-
duces the identified problems, which are the output of the
tool. These identified problems are then shown by the GUI
component. We next describe these components in detail.
Currently, Covana supports the detection of EMCPs and
OCPs only.

2.1 Forward Symbolic Executor
The forward symbolic executor component performs for-

ward symbolic execution and produces the achieved coverage
and the collected runtime information. Covana leverages the
DSE engine of Pex to perform forward symbolic execution.
To identify problem candidates and collect runtime informa-
tion, we implemented the problem-candidate identifier as a
Pex extension. The problem-candidate identifier observes
the runtime events from Pex and analyzes these events to
identify different types of problem candidates.

EMCP Candidate Identification. To identify EMCP
candidates, the problem-candidate identifier observes the
method entry and exit events. If a method of the pro-
gram under test is not instrumented by DSE, the method
call is considered as an external-method call, being either a
method call to system libraries or third-party pre-compiled
libraries. Since the number of external-method calls can be
large, the problem-candidate identifier considers as candi-
dates only the external-method calls whose arguments have
data dependency for program inputs.

OCP Candidate Identification. To identify OCP can-
didates, the problem-candidate identifier observes the pro-
gram entry events. OCP requires objects of a non-primitive
type as program inputs, and the problem-candidate iden-
tifier ignores the program inputs whose type is a primitive
type, such as int, double, and boolean. For program inputs of
non-primitive types, the problem-candidate identifier marks
the program inputs themselves and their fields as problem
candidates of OCPs.

Forward Symbolic Execution. The forward symbolic
executor leverages the DSE engine of Pex to perform for-
ward symbolic execution by assigning symbolic values to ele-
ments of the identified problem candidates, including return
values of external-method calls and program inputs of non-
primitive types as well as their fields. We use the generated
test inputs as program inputs during the forward symbolic
execution.

Runtime Information Collection. The runtime infor-
mation collected by the forward symbolic executor includes
symbolic expressions of predicates in branch statements and
uncaught exceptions. We collect symbolic expressions of
predicates in branch statements for later computation of
data dependencies of partially-covered branch statements.
If some branch statements have data dependencies on prob-



Figure 2: The GUI component showing identified

problems and detailed analysis information

lem candidates, we can find constraints involving symbolic
values in the collected symbolic expressions of predicates in
branch statements. We collect uncaught exceptions during
test execution, since uncaught exceptions thrown inside the
execution of an external-method call can prevent Pex from
exploring the remaining parts of the program after the call
site of the external-method call.

2.2 Data-dependence Analyzer
The data-dependence analyzer consumes the coverage and

runtime information collected by the forward symbolic ex-
ecutor, and computes data dependencies on problem can-
didates. Using the collected coverage, the data-dependence
analyzer further prunes the problem candidates that none of
partially-covered branch statements have data dependencies
on. The GUI component presents the identified problems
with the detailed analysis information.

EMCP Identification. The data-dependence analyzer
identifies EMCPs using the computed data dependencies on
EMCP candidates for their return values. If there exist
data dependencies of partially-covered branch statement on
an EMCP candidate, the data-dependence analyzer iden-
tifies such a candidate as an EMCP. To identify external-
method executions that throw exceptions to abort test ex-
ecutions, the data-dependence analyzer further extracts the
method calls from the collected stack traces of uncaught ex-
ceptions thrown during runtime. If such method calls con-
tain any external-method calls, and the remaining parts of
the program after the call site of the external-method call
are not covered, the data-dependence analyzer identifies the
extracted external-method call as an EMCPs that causes the
remaining parts of the program not to be covered.

OCP Identification. The data-dependence analyzer iden-
tifies OCPs using the computed data dependencies on OCP
candidates. If a partially-covered branch statement is data
dependent for only program inputs, the data-dependence an-
alyzer directly reports the program inputs as OCPs. How-
ever, if a partially-covered branch statement is data depen-
dent for fields of program inputs, the data-dependence ana-
lyzer performs further analysis to identify which fields cause
Pex not to achieve higher structural coverage. If a field
cannot be assigned with an object directly by invoking a
constructor or a public setter method of its declaring class,

Figure 3: The GUI component showing the analysis

of EMCP

the object state of the field can be changed only by invoking
other public state-modifying methods of its declaring class.
In this case, the data-dependence analyzer reports only its
declaring class type as an OCP.

2.3 GUI Component
The GUI component of Covana takes as inputs the identi-

fied problems from the data-dependence analyzer and shows
the problems with the detailed analysis information. Figures
2 and 3 show screenshots of the GUI component, which is
built using windows forms [1]. In Figure 2, the GUI compo-
nent displays the assembly name of the program under test
and shows as a tree the identified problems with the related
not-covered branches. When users select a problem, the GUI
component presents the detailed analysis information of the
selected problem. In Figure 3, Area 1 shows the encountered
external-method calls and Area 2 shows the external-method
calls that subsequent branches have data dependencies on.

Acknowledgments. This work is supported in part by
NSF grants CNS-0716579, CCF-0725190, CCF-0845272, CCF-
0915400, CNS-0958235, an NCSU CACC grant, ARO grant
W911NF-08-1-0443, and ARO grant W911NF-08-1-0105 man-
aged by NCSU SOSI.

3. REFERENCES
[1] Windows Forms, 2002. http://windowsclient.net/.

[2] J. de Halleux and N. Tillmann. Parameterized Unit
Testing with Pex. In Proc. TAP, pages 171–181, 2008.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In Proc. PLDI,
pages 213–223, 2005.

[4] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic
Unit Testing Engine for C. In Proc. ESEC/FSE, pages
263–272, 2005.

[5] N. Tillmann and J. de Halleux. Pex-White Box Test
Generation for .NET. In Proc. TAP, pages 134–153,
2008.

[6] N. Tillmann and W. Schulte. Parameterized Unit Tests.
In Proc. ESEC/FSE, pages 253–262, 2005.

[7] N. Tillmann and W. Schulte. Mock-object Generation
with Behavior. In Proc. ASE, pages 365–368, 2006.

[8] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux.
Precise Identification of Problems for Structural Test
Generation. In Proc. ICSE, 2011.

http://windowsclient.net/

	Introduction
	Covana Architecture
	Forward Symbolic Executor
	Data-dependence Analyzer
	GUI Component

	References

